Answer:
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
Explanation:
Answer:
in the direction of motion of Jacob
Explanation:
Given:
mass of Jacob, 
velocity of Jacob, 
mass of Ethan, 
velocity of Ethan, 
Now using the conservation of linear momentum for the case:
(When the two masses in motion combine to form one after the collision then they will move together in the direction of the greater momentum.)


in the direction of motion of Jacob as it was assumed to be positive.
Answer:
the magnitude of the electric field is 1.25 N/C
Explanation:
The induced emf in the cube ε = LB.v where B = magnitude of electric field = 5 T , L = length of side of cube = 1 cm = 0.01 m and v = velocity of cube = 1 m/s
ε = LB.v = 0.01 m × 5 T × 1 m/s = 0.05 V
Also, induced emf in the cube ε = ∫E.ds around the loop of the cube where E = electric field in metal cube
ε = ∫E.ds
ε = Eds since E is always parallel to the side of the cube
= E∫ds ∫ds = 4L since we have 4 sides
= E(4L)
= 4EL
So,4EL = 0.05 V
E = 0.05 V/4L
= 0.05 V/(4 × 0.01 m)
= 0.05 V/0.04 m
= 1.25 V/m
= 1.25 N/C
So, the magnitude of the electric field is 1.25 N/C
Answer:
Emec = 94050 [J]
Explanation:
In order to solve this problem, we must understand that all thermal energy is converted into mechanical energy.
The thermal energy can be calculated by means of the following expression.

where:
Q = heat [J]
Cp = specific heat of water = 4186 [J/kg*°C]
m = mass = 300 [g] = 0.3 [kg]
T_final = 95 [°C]
T_initial = 20 [°C]
Now we can calculate the heat, replacing the given values:
![Q=0.3*4180*(95-20)\\Q= 94050[J]](https://tex.z-dn.net/?f=Q%3D0.3%2A4180%2A%2895-20%29%5C%5CQ%3D%2094050%5BJ%5D)
Since all this energy must come from the mechanical energy delivered by the exercise bike, and no energy is lost during the process, the mechanical energy must be equal to the thermal energy.
![Q=E_{mec}\\E_{mec}=94050[J]](https://tex.z-dn.net/?f=Q%3DE_%7Bmec%7D%5C%5CE_%7Bmec%7D%3D94050%5BJ%5D)
Answer:
By applying a force of one Newton, one can hold a body of mass of 102 gram.
Explanation:
- Force is the pull or push of an object. It can be mathematically measured as, F= m* g.
where, F= force in newton
m= mass in kg
g= acceleration due to gravity (
)
F= m* 9.8
or, m=
= 0.102 kg
or, m= 102 gram.
- Hence, 102 gram mass can be hold by one Newton force.