Answer:
a) V =10¹¹*(1.5q₁ + 3q₂)
b) U = 1.34*10¹¹q₁q₂
Explanation:
Given
x₁ = 6 cm
y₁ = 0 cm
x₂ = 0 cm
y₂ = 3 cm
q₁ = unknown value in Coulomb
q₂ = unknown value in Coulomb
A) V₁ = Kq₁/r₁
where r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m
V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁
V₂ = Kq₂/r₂
where r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m
V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂
The electric potential due to the two charges at the origin is
V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)
B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows
U = Kq₁q₂/r₁₂
where
r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m
then
U = 9*10⁹q₁q₂/(3√5/100)
⇒ U = 1.34*10¹¹q₁q₂
Answer:
sorry i dont understand the answer
Explanation:
but i think its a xd jk psml lol
Answer:
For most applications, it is simple, dependable, efficient, and straightforward to apply - a simple trigger signal may be provided, with appropriate processing if necessary. This implies that an appropriate trigger signal may be generated using other electrical circuits and then applied to the SCR.
Explanation:
If a pilot-operated check valve (POC) does not check flow, you will see a. erratic actuator movement.
<h3>What is a pilot-operated check valve (POC)?</h3>
Pilot operated test valves paintings through permitting loose float from the inlet port via the opening port. Supplying a pilot strain to the pilot port permits float withinside the contrary direction. Air strain on pinnacle of the poppet meeting opens the seal permitting air to float freely.
An actuator fault is a form of failure affecting the machine inputs. Due to strange operation or fabric aging, actuator faults might also additionally arise withinside the machine. An actuator may be represented through additive and/or multiplicative fault.
Read more about the pilot-operated check valve:
brainly.com/question/13001928
#SPJ1
Answer:
STEP1 Cut to Rough Length
STEP2 Cut to Rough Width
STEP 3 Face-Jointing
HOPE THAT HELPSSS!!!