Answer:
The electrical power is 96.5 W/m^2
Explanation:
The energy balance is:
Ein-Eout=0

if:
Gsky=oTsky^4
Eb=oTs^4
qc=h(Ts-Tα)


if Gl≈El(l,5800)

lt= 2*5800=11600 um-K, at this value, F=0.941

The hemispherical emissivity is equal to:

lt=2*333=666 K, at this value, F=0

The hemispherical absorptivity is equal to:

Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:
final temperature is 424.8 K
so correct option is e 424.8 K
Explanation:
given data
pressure p1 = 1 bar
pressure p2 = 5 bar
index k = 1.3
temperature t1 = 20°C = 293 k
to find out
final temperature t2
solution
we have given compression is reversible and has an index k
so we can say temperature is
...........1
put here all these value and we get t2
t2 = 424.8
final temperature is 424.8 K
so correct option is e
The following scenarios are pertinent to driving conditions that one may encounter. See the following rules of driving.
<h3>What do you do when the car is forced into the guardrail?</h3>
Best response:
- I'll keep my hands on the wheel and slow down gradually.
- The reason I keep my hands on the steering wheel is to avoid losing control.
- This will allow me to slowly back away from the guard rail.
- The next phase is to gradually return to the fast lane.
- Slamming on the brakes at this moment would result in a collision with the car behind.
Scenario 2: When driving on a wet road and the car begins to slide
Best response:
- It is not advised to accelerate.
- Pumping the brakes is not recommended.
- Even lightly depressing and holding down the brake pedal is not recommended.
- The best thing to do is take one foot off the gas pedal.
- There should be no severe twists at this time.
Scenario 3: When you are in slow traffic and you hear the siren of an ambulance behind
Best response:
- The best thing to do at this moment is to go to the right side of the lane and come to a complete stop.
- This helps to keep the patient in the ambulance alive.
- It also provide a clear path for the ambulance.
- Moving to the left is NOT recommended.
- This will exacerbate the situation. If there is no place to park on the right shoulder of the road, it is preferable to stay in the lane.
Learn more about rules of driving. at;
brainly.com/question/8384066
#SPJ1
Explanation:
A.
H = Aeσ^4
Using the stefan Boltzmann law
When we differentiate
dH/dT = 4AeσT³
dH/dT = 4(0.15)(0.9)(5.67)(10^-8)(650)³
= 8.4085
Exact error = 8.4085x20
= 168.17
H(650) = 0.15(0.9)(5.67)(10^-8)(650)⁴
= 1366.376watts
B.
Verifying values
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(670)⁴
= 1542.468
H(T+ΔT) = 0.15(0.9)(5.67)(10^-8)(630)⁴
= 1205.8104
Error = 1542.468-1205.8104/2
= 168.329
ΔT = 40
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(690)⁴
= 1735.05
H(T-ΔT) = 0.15(0.9)(5.67)(10^-8)(610)⁴
= 1735.05-1059.83/2
= 675.22/2
= 337.61