Answer:

Explanation:
Let us imagine that there are three wire of length equal length having equal resistances each of 44/3 Ω
Now connect these wires in parallel to so that their equivalent resistance is R.
then



⇒
Answer:
<h2>602.08 N</h2>
Explanation:
The force supplied by the train can be found by using the formula

w is the workdone
d is the distance
From the question we have

We have the final answer as
<h3>602.08 N</h3>
Hope this helps you
The equation to find force is f=ma. So, if you plug in the information that you have you'll get F=5x3 and that'll equal F=15N
<span>According to Newton's first law of motion:
-- objects at rest will remain at rest unless acted upon by an outside force
-- objects in motion will remain in motion unless acted upon by an outside force
</span>
Answer:
A= 148.92 m/s²
Explanation:
Given that
U(x,y) = (6.00 )x² - (3.75 )y ³
m= 0.04 kg
Now force in the x-direction
Fx= - dU/dx
U(x,y) = (6.00 )x² - (3.75 )y ³
dU/dx= 12 x
When x=0.4 m
dU/dx= 12 x 0.4 = 4.8
So we can say that
Fx= - 4.8 N
From Newtons law
F= m a
- 4.8 = 0.04 x a
a = -120 m/s²
Acceleration in x direction ,a = -120 m/s²
In y -direction
F= - dU/dy
U(x,y) = (6.00 )x² - (3.75 )y ³
dU/dy = 0 - 3.75 x 3 y²
When y = 0.56 m
dU/dy = - 3.75 x 3 x 0.56 x 0.56
dU/dy = - 3.52
So we can say that force in y -direction
F= 3.52 N
F= m a'
3.52 = 0.04 x a'
a'=88.2 m/s²
acceleration in y direction is 88.2 m/s²
The resultant acceleration


A= 148.92 m/s²