Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
Between the top of the first and the top of the second loop, the coaster has lost potential energy = mgh, where h = 22.2 - 15 = 7.2m
This energy would have converted to Kinetic. Write out an equation and the masses will cancel out. Does that hint help you to find the solution? If not, I will give you another hint.
The stratosphere is the layer above the troposphere
Explanation:
ij jdjcjxjjdjnndnxnsmxnjxjebxnc
(2.00 hours) x (3,600 seconds/hour) = 7,200 seconds
(9.00 minutes) x (60 seconds/minute) = 540 seconds
The record time = (7,200 + 540 + 21) = 7,761 seconds
Distance = (speed) x (time)
= (5.436 m/s) x (7,761 sec) =<span> 42,188.8 meters
________________________________________________
</span>
The official length of the marathon run is 42,195 meters.
If we divide that by the record time in the question, we get
5.4368... m/s .
Rounded to the nearest thousandth, that's 5.437 m/s.
If the question had given the speed as 5.437 instead of 5.436 ,
then we would have calculated the distance to be
(5.437 m/s) x (7,761 sec) =<span> 42,196.6 meters,
4.6 meters closer to the official distance than the answer we did get.
</span>