1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
5

Block A of mass 2.0 kg is released from rest at the top of a 3.6 m long plane inclined at an angle of 30o, as shown in the figur

e above. After sliding on the horizontal surface, block A hits and sticks to block B, which is at rest and has mass 3.0 kg. Assume friction is negligible. The speed of the blocks after the collision is most nearly
Physics
2 answers:
Jet001 [13]3 years ago
4 0

Answer:

............................

31kg

Helen [10]3 years ago
4 0

Answer:

2.4 m/s

Explanation:

You might be interested in
A spaceship is travelling at 20,000.0 m/s. After 5.0 seconds, the rocket thrusters are turned on. At the 55.0 second mark, the s
tankabanditka [31]

Answer:

80 m/s^2

Explanation:

The acceleration of an object is given by:

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time interval it takes for the velocity to change from u to v

For the rocket in this problem,

u = 20,000 m/s

v = 24,000 m/s

t = 55.0 - 5.0 = 50.0 s

Substituting,

a=\frac{24000-20000}{50}=80 m/s^2

7 0
2 years ago
A rope of total mass m hnd length L is suspended vertically with an object of mass M suspended from the lower end. Find an expre
pantera1 [17]

Answer:

Part a)

v = \sqrt{xg + \frac{MLg}{m}}

Part b)

t = 12 s

Explanation:

Part a)

Tension in the rope at a distance x from the lower end is given as

T = \frac{m}{L}xg + Mg

so the speed of the wave at that position is given as

v = \sqrt{\frac{T}{\mu}}

here we know that

\mu = \frac{m}{L}

now we have

v = \sqrt{\frac{ \frac{m}{L}xg + Mg}{m/L}

v = \sqrt{xg + \frac{MLg}{m}}

Part b)

time taken by the wave to reach the top is given as

t = \int \frac{dx}{\sqrt{xg + \frac{MLg}{m}}}

t = \frac{1}{g}(2\sqrt{xg + \frac{MLg}{m}})

t = \frac{2}{9.8}(\sqrt{(39.2\times 9.8) + \frac{8(39.2)(9.8)}{1}})

t = 12 s

4 0
3 years ago
The free-fall acceleration on Mars is 3.7 m/s^2. What length of pendulum has a period of 1.0 s on Earth? What length of pendulum
NemiM [27]

Answer:

Explanation:

Given

Free fall acceleration on mars g_{m}=3.7\ m/s^2

Time Period of pendulum on earth T=1\ s

Time period of Pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

for earth

1=2\pi\cdot \sqrt{\frac{L}{9.8}}

L=\frac{9.8}{(2\pi )^2}

L=0.498\ m

(b)For same time period on mars length is given by

L'=\frac{g_m}{(2\pi )^2}

L'=\frac{3.7}{39.48}

L'=0.0936\ m

L'=9.36\ cm                            

3 0
3 years ago
An automobile of mass 2000 kg moving at 30 m/s is braked suddenly with a constant braking force of 10000 N. How far does the car
saveliy_v [14]

Answer:

The car traveled the distance before stopping is 90 m.

Explanation:

Given that,

Mass of automobile = 2000 kg

speed = 30 m/s

Braking force = 10000 N

For, The acceleration is

Using newton's formula

F = ma

Where, f = force

m= mass

a = acceleration

Put the value of F and m into the formula

-10000 =2000\times a

Negative sing shows the braking force.

It shows the direction of force is opposite of the motion.

a = -\dfrac{10000}{2000}

a=-5\ m/s^2

For the distance,

Using third equation of motion

v^2-u^2=2as

Where, v= final velocity

u = initial velocity

a = acceleration

s = stopping distance of car

Put the value in the equation

0-30^2=2\times(-5)\times s

s = 90\ m

Hence, The car traveled the distance before stopping is 90 m.

6 0
3 years ago
Kissa and Lily ran a race in gym class Lily was off balance so she did not start until 2 seconds had passed
Paul [167]
Average speed = (distance covered) / (time to cover the distance)

Tissa covered 60 meters in 10 seconds. Her average speed was

(60 m) / (10 sec) = 6 m/s.

That's the slope of the dotted line.

Lilly covered 60 meters in 8 seconds. Her average speed was

(60 m) / (8 sec) = 7.5 m/s .

That's the slope of the solid line.

Lilly covered the same distance in less time, and both girls
arrived at the finish line together. Technically, in science talk,
we would say that Lilly ran "faster", and her average speed
was "greater".

We can detect that by looking at the graph, because Lilly's line
has the characteristic of being "steeper", and we know that the
slope of the line on a distance/time graph is "speed".
3 0
2 years ago
Other questions:
  • Doug is driving a golf ball off the tee. His downswing takes 0.50sec from the top of the swing until ball impact. At the top of
    13·1 answer
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • Which statement is true?
    15·2 answers
  • You decide you want to carry a boulder home from the beach it is 30 centimeter on each side. It is made of granite, which has a
    5·1 answer
  • A force of 20 N is inclined at 30 degrees to the X axis. What are X and Y components of the force?
    7·2 answers
  • The force an ideal spring exerts on an object is given by , where measures the displacement of the object from its equilibrium p
    6·1 answer
  • Which option best describes the increase in pressure when the volume of a plastic bottle decreases?
    13·1 answer
  • When running a long distance during the Texas summer which of the following would happen?
    12·1 answer
  • When there is more speed does that mean there is more or less force?
    10·2 answers
  • What is the electric potential energy of a 4. 0 uc charge placed at that point where the electric potential at that point in spa
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!