You haven't said how much power the stereo uses. It matters !
Whatever that number is, the maximum hours per month is
(3460) divided by (the # of watts the stereo uses when it's playing) .
Answer:
A mass of 10 kilograms lifted 10 meters in 5 seconds.
Explanation:
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
But Energy = mgh
Substituting into the equation, we have

Given the following data;
Mass = 10kg
Height = 10m
Time = 5 seconds
We know that acceleration due to gravity is equal to 9.8 m/s²

Hence, a mass of 10 kilograms lifted 10 meters in 5 seconds would produce the most power.
Answer:
The velocity of mass 2m is 
Explanation:
From the question w are told that
The mass of the billiard ball A is =m
The initial speed of the billiard ball A =
=1 m/s
The mass of the billiard ball B is = 2 m
The initial speed of the billiard ball B = 0
Let the final speed of the billiard ball A = 
Let The finial speed of the billiard ball B = 
According to the law of conservation of Energy

Substituting values

Multiplying through by 

According to the law of conservation of Momentum

Substituting values

Multiplying through by 

making
subject of the equation 2

Substituting this into equation 1




Multiplying through by 



Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)
Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)
Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)
Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)