Answer:
The arrow will leave the bow with a velocity of 10 m/s.
Explanation:
Hi there!
The potential energy stored in the bow can be calculated using the following equation:
U = 1/2 · k · d²
Where
U = elastic potential energy.
k = spring constant.
d = stretched distance of the bow
Then:
U = 1/2 · 112 N/m · (0.29 m)²
U = 4.7 J
When the bow is released, the potential energy is transformed into kinetic energy. Then, the kinetic energy of the arrow when it leaves the bow will be:
KE = 1/2 · m · v² = 4.7J
Where:
KE = kinetic energy.
m = mass of the arrow.
v = velocity of the arrow:
Then:
4.7 J = 1/2 ·0.094 kg · v²
2 · 4.7 J / 0.094 kg = v²
9.4 kg · m²/s² / 0.094 kg = v²
v = 10 m/s
The arrow will leave the bow with a velocity of 10 m/s.
Ethanol has a weaker intermolecular force than water.
Answer:
Image is between F and 2F. And the exact location is:
q = 10.84 cm
Explanation:
The convex lens form different kinds of images with different sizes and locations, for the different positions of an object. In this case, the object is placed 30.5 cm from the convex lens with a focal length of 8 cm. This means that it is the case of the object placed beyond 2F. In this case, the image formed has the following characteristics:
1. Image is real.
2. Image is inverted
3. Image is diminished
<u>4. Image is located between F and 2F</u>
For exact location we use the thin lens formula:

where,
f = focal length = 8 cm
p = object distance = 30.5 cm
q = image distance = ?
Therefore,

<u>q = 10.84 cm</u>
Answer:current
Explanation:water flows down a river. Current flows down a wire (in the drude model, at least)
Before any calculations, we need to determine first the crystal structure of the lead metal. From literature, the lead metal assumes an FCC structure. So, it would have 4 atoms per units cell where the three atoms is the sum of all the portion of an atoms in each face of the cell and the 1 atom is the sum of all the portion of the corner atoms. The volume of the unit cell is equal to the edge length raise to the power three or V = a^3. The edge length can be calculated from the radius of the atoms by the pythagorean theorem. We do as follows:
V = a^3
a^2 + a^2 = (4r)^2
2a^2 = (4r)^2
a = 2r
V = (2r)^3
V = 16r^3
V = 16 (0.175x10^-9)^3
V = 1.21 x 10^-28 m^3