Answer:
Distance, d = 112.5 meters
Explanation:
Initially, the bicyclist is at rest, u = 0
Final speed of the bicyclist, v = 30 m/s
Acceleration of the bicycle, 
Let s is the distance travelled by the bicyclist. The third equation of motion is given as :



s = 112.5 meters
So, the distance travelled by the bicyclist is 112.5 meters. Hence, this is the required solution.
Answer:

Explanation:
The apparent brightness follows an inverse square law, therefore we can write:

where I is the apparent brightness and r is the distance from the Sun.
We can also rewrite the law as
(1)
where in this problem, we have:
apparent brightness at a distance
, where
million km
We want to estimate the apparent brightness at
, where
is ten times
, so

Re-arranging eq.(1), we find
:

Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
Planetary Nebula are the outer layers of a star that are lost when the star changes from a red giant to a white dwarf. A star is a luminous globe of gas producing its own heat and light by nuclear reactions (nuclear fusion). They are born from nebulae and consist mostly of hydrogen and helium gas.
Is this what you needed?