Answer:
R = 98304.75 m = 98.3 km
Explanation:
The density of an object is given as the ratio between the mass of that object and the volume occupied by that object.
Density = Mass/Volume
Now, it is given that the density of Earth has become:
Density = 1 x 10⁹ kg/m³
Mass = Mass of Earth (Constant) = 5.97 x 10²⁴ kg
Volume = 4/3πR³ (Volume of Sphere)
R = Radius of Earth = ?
Therefore,
1 x 10⁹ kg/m³ = (5.97 x 10²⁴ kg)/[4/3πR³]
4/3πR³ = (5.97 x 10²⁴ kg)/(1 x 10⁹ kg/m³)
R³ = (3/4)(5.97 x 10¹⁵ m³)/π
R = ∛[0.95 x 10¹⁵ m³]
<u>R = 98304.75 m = 98.3 km</u>
<span>I believe it's insulation.</span>
<span>A light-year measures the distance that light travels in 1 year.
Answer : B ) Distance
-Hope this helps.</span>
Answer:
I would say it's B. But just in case here is some information if I'm wrong.
Explanation:
Igneous rocks are very dense and hard. They may have a glassy apprearance. Metamorphic rocks may also have a glassy appearance. You can distinguish these from igneous rocks based on the fact that metamorphic rocks tend to be brittle, lightweight, and an opaque black color.
Hope this helps!
Please mark me Brainliest! :)
Answer:
1 - third law
2 - second law
3 - first law
4 - third law
5 - second law
6 - first law
Explanation:
First law
In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
Second law
In an inertial frame of reference, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration, a of the object
F = ma.
Third law
When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.