Answer: If the intermolecular forces are weak, then molecules can break out of the solid or liquid more easily into the gas phase. Consider two different liquids, one polar one not, contained in two separate boxes. We would expect the molecules to more easily break away from the bulk for the non-polar case. If the molecules are held tightly together by strong intermolecular forces, few of the molecules will have enough kinetic energy to separate from each other. They will stay in the liquid phase, and the rate of evaporation will be low. ... They will escape from the liquid phase, and the rate of evaporation will be high. To make water evaporate, energy has to be added. The water molecules in the water absorb that energy individually. Due to this absorption of energy the hydrogen bonds connecting water molecules to one another will break.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!! :D
Answer:
8L
Explanation:
Using Boyle's law which states that the volume of a given mass of gas is inversely proportional to the pressure, provided temperature remains constant
P1V1= P2V2
P1 = 2atm, V1 = 12L ,
P2 = 3atm , V2 =
12 × 2 = V2 × 3
Divide both sides by 3
V2 = 24 ÷ 3
V2 = 8L
I hope this was helpful, please mark as brainliest
<h3>
Answer:</h3>
812 kPa
<h3>
Explanation:</h3>
- According to Boyle's law pressure and volume of a fixed mass are inversely proportional at constant absolute temperature.
- Mathematically,

At varying pressure and volume;
P1V1=P2V2
In this case;
Initial volume, V1 = 2.0 L
Initial pressure, P1 = 101.5 kPa
Final volume, V1 = 0.25 L
We are required to determine the new pressure;

Replacing the known variables with the values;

= 812 kPa
Thus, the pressure of air inside the balloon after squeezing is 812 kPa
Explanation:
The molarity of a solution is defined like the number of moles of solute per liters of solution.
molarity = moles of solute/(volume of solution in L)
We know the volume of solution in L.
volume of solution = 0.65 L
To go from the mass of our solute in grams to moles we have to use its molar mass.
mass of NaCl = 63 g
molar mass of NaCl = 58.44 g/mol
moles of NaCl = 63 g * 1 mol/(58.44 g)
moles of NaCl = 1.078 moles
Finally we can find the molarity of the solution
molarity = moles of NaCl/(volume of solution)
molarity = 1.078 moles/(0.65 L)
molarity = 1.66 M
Answer: the molarity of the solution is 1.66 M.