Answer:
d = 493.72 m
Explanation:
Given that,
Initial velocity of the train, u = 80 km/h = 22.22 m/s
Acceleration of the train, a = -0.5 m/s² (negative as it slows down)
Finally brakes are applied, v = 0
We need to find the distance the train travels. Let the distance be d. Using third equation of kinematics to find it.

So, the required distance is equal to 493.72 m.
Answer:
Always wear a lab coat and safety goggles when performing an experiment
Answer:
The speed, magnitude of the velocity, magnitude of the angular velocity, magnitude of the centripetal acceleration, magnitude of the net force and direction of the angular velocity are constant.
Explanation:
In uniform circular motion we have a centripetal acceleration of constant magnitude but changing direction (since it points to the center of the circle from the object). The same goes for the net (centripetal) force since F=ma. This makes the magnitude of the velocity (speed) constant but its direction changes, although keeping spinning in the same direction, which makes its angular velocity constant in both magnitude and direction.