1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
9

Briefly explain how an electric motor works.

Physics
1 answer:
NeTakaya3 years ago
3 0
You put electricity<span> into it at one end and an </span>axle<span> (metal rod) rotates at the other end giving you the power to drive a machine of some kind. 


</span>

You might be interested in
What is the particles instantaneous speed at t=16 sec
Ira Lisetskai [31]

It's  3.6 meters per second less than my speed was
at 4:19 PM last Tuesday.

Does that tell you anything ?
Why not ?

 
8 0
3 years ago
Given: F = k· m. g<br> Solve for "k"
gulaghasi [49]

Answer:

F = kmg \\ k =  \frac{F}{mg}

8 0
3 years ago
Read 2 more answers
Determine the speed, wavelength, and frequency of light from a helium-neon laser as it travels through polystyrene. The waveleng
klemol [59]

Answer:

Speed:

2.01x10^{8}m/s

Wavelength:

4.24x10^{-7}m

Frequency:

4.74x10^{14}Hz

Explanation:

The speed of the laser as it travels through polystyrene can be determine by means of the equation of the refraction index:

n = \frac{c}{v} (1)

Where c is the speed of light and v is the speed of the laser in the medium.

Therefore, v will be isolated from equation 1

v = \frac{c}{n}

v = \frac{3x10^{8}m/s}{1.490}

v = 2.01x10^{8}m/s

Hence, the speed of the laser has a value of 2.01x10^{8}m/s

Frenquency:

Since, wavelength is the only one who depends on the media. Therefore the frequency in both medium will be the same.  

To determine the frequency it can be used the following equation

c = \nu \cdot \lambda  (2)

Where c is the speed of light, \nu is the frequency and \lambda is the wavelength

Then, \nu wil be isolated from equation 2.

\nu = \frac{c}{\lambda}  (3)

Before using equation 3 it is necessary to express \lamba in units of meters.

\lambda = 632.8nm . \frac{1m}{1x10^{9}nm} ⇒ 6.328x10^{-7}m

\nu = \frac{3x10^{8}m/s}{6.328x10^{-7}m}

\nu = 4.74x10^{14}s^{-1}

\nu = 4.74x10^{14}Hz

Hence, the frequency of the laser has a value of 4.74x10^{14}Hz

Wavelength:

To determine the wavelength it can be used:

v = \nu \cdot \lambda

\lambda = \frac{v}{\nu}

Where v is the speed of the laser through the polystyrene.

\lambda = \frac{2.01x10^{8}m/s}{4.74x10^{14}s^{-1}}

\lambda = 4.24x10^{-7}m

Hence, the wavelength of the laser has a value of 4.24x10^{-7}m

3 0
3 years ago
Two workers are sliding 300 kg crate across the floor. One worker pushes forward on the crate with a force of 400 N while the ot
almond37 [142]

Answer:

The kinetic coefficient of friction of the crate is 0.235.

Explanation:

As a first step, we need to construct a free body diagram for the crate, which is included below as attachment. Let supposed that forces exerted on the crate by both workers are in the positive direction. According to the Newton's First Law, a body is unable to change its state of motion when it is at rest or moves uniformly (at constant velocity). In consequence, magnitud of friction force must be equal to the sum of the two external forces. The equations of equilibrium of the crate are:

\Sigma F_{x} = P+T-\mu_{k}\cdot N = 0 (Ec. 1)

\Sigma F_{y} = N - W = 0 (Ec. 2)

Where:

P - Pushing force, measured in newtons.

T - Tension, measured in newtons.

\mu_{k} - Coefficient of kinetic friction, dimensionless.

N - Normal force, measured in newtons.

W - Weight of the crate, measured in newtons.

The system of equations is now reduced by algebraic means:

P+T -\mu_{k}\cdot W = 0

And we finally clear the coefficient of kinetic friction and apply the definition of weight:

\mu_{k} =\frac{P+T}{m\cdot g}

If we know that P = 400\,N, T = 290\,N, m = 300\,kg and g = 9.807\,\frac{m}{s^{2}}, then:

\mu_{k} = \frac{400\,N+290\,N}{(300\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}

\mu_{k} = 0.235

The kinetic coefficient of friction of the crate is 0.235.

5 0
3 years ago
Why is the sky blue?
Taya2010 [7]
A clear cloudless day-time sky is blue because molecules in the air scatter blue light from the sun more than they scatter red light. When we look towards the sun at sunset, we see red and orange colours because the blue light has been scattered out and away from the line of sight.
4 0
3 years ago
Other questions:
  • What is the speed of a wave with a frequency of 0.2 Hz and a wavelength of 100 meters?
    13·2 answers
  • Determine the minimum applied force p required to move wedge a to the right. the spring is compressed a distance of 175 mm. negl
    13·1 answer
  • Which quantity can be calculated using the equation E = mc2?
    5·2 answers
  • A train travels at a speed of 30 miles/hour and traveled a distance of 240 miles. How
    14·1 answer
  • Two vectors have a sum A and their difference is B.If A=B then,the angle between the two vectors is
    13·1 answer
  • A capacitor is charged by a 150.0-V power supply, then disconnected from the power and connected in series with a 0.280-mH induc
    10·1 answer
  • Two small objects, with masses m and m, are originally a distance r apart, and the gravitational force on each one has magnitude
    15·2 answers
  • Suppose no stars more massive than about 2 solar masses had ever formed. Would life as we know it have been able to develop
    9·1 answer
  • A hula hoop is rolling along the ground with a translational speed of 26 ft/s. It rolls up a hill that is 16 ft high. Determine
    14·1 answer
  • When you push an object, it pushes back with an equal and opposite force
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!