Answer:
The hammer and the wall exert forces on each other that are equal in magnitude but in opposite directions.
Explanation:
currently doing corrections on the test!
:)
Answer:
The answer is
A. Pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
Explanation:
The question is incomplete, here is a complete question with full options
You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun uses a plunger which is operated by pulling back on a handle. You must squeeze the handle very hard to get the caulk to come out of the narrow opening because:_________.
A. pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
B. viscous drag between the walls of the tip and the caulk causes the caulk to swirl around chaotically.
C. Newton’s third law requires most of the energy in the caulk to be used to push back on the plunger rather than moving it through the tip.
D. the high density of the caulk impedes its flow through the small opening.
Since the caulk is thick and the exit nozzle is small, the pressure needed to deliver the caulk will be very high as pressure is uniformly distributed at the plunger side at every part of the caulk, hence very high pressure is needed to deliver the caulk which is why the handle needed the very hard squeeze
)
5
-5
1 2 3
4
5
Other than at t = 0, when is the velocity of
the object equal to zero?
1. 5.0 s
2. 4.0 s
3. 3.5 s
4. At no other time on this graph. correct
5. During the interval from 1.0 s to 3.0 s.
Explanation:
Since vt =
Z t
0
a dt, vt
is the area between
the acceleration curve and the t axis during
the time period from 0 to t. If the area is above
the horizontal axis, it is positive; otherwise, it
is negative. In order for the velocity to be zero
at any given time t, there would have to be
equal amounts of positive and negative area
between 0 and t. According to the graph, this
condition is never satisfied.
005 (part 1 of 1) 0 points
Identify all of those graphs that represent motion
at constant speed (note the axes carefully).
a) t
x
b) t
v
c) t
a
d) t
v
e) t
a
Answer:
The steam engine of James watt is more efficient than Newcomen ans more suitable for the industrial revolution.
Explanation:
James Watt is more widely know for working steam engine because Watt has created better engine which is suitable for the industrial revolution. The steam engine of James watt is more efficient than Newcomen. Watt developed the condensing arrangement by using piston which lessen the initial pressure leading to effectively worked than Newcomen's