Explanation:
Speed or velocity (V) = 35 m/s
Kinetic energy (K. E) = 1500 Joule
mass (m) = ?
We know
K.E = 1/2 * m * v²
1500 = 1/2 * m * 35²
1500 * 2 = 1225m
m = 3000 / 1225
m = 2.45 kg
The mass of the object is 2.45 kg
Hope it will help :)
<span>What I have here is exactly the same problem, however, with the time changed to 19 mins:
metabolic energy = metabolic power*time = 1.150*19*60 = 1.311 kJ..corresponding to 1.311/4.186 = 313,2 Cal or kcal
If we reasonably assume a metabolic eff.cy of 20%, it means we need to assume food for 1500 Cal approx.
Just plug the value t=15min to the equation and you will surely get the correct answer.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
a) A = 3 cm, b) T = 0.4 s, f = 2.5 Hz,
2) A standing wave the displacement of the wave is canceled and only one oscillation remains
Explanation:
a) in an oscillatory movement the amplitude is the highest value of the signal in this case
A = 3 cm
b) the period of oscillation is the time it takes for the wave to repeat itself in this case
T = 0.4 s
the period is the inverse of the frequency
f = 1 /T
f = 1 /, 0.4
f = 2.5 Hz
2) a traveling wave is a wave for which as time increases the displacement increases, in the case of a transverse wave the oscillation is perpendicular to the displacement and in the case of a longitudinal wave the oscillation is in the same direction of the displacement.
A standing wave occurs when a traveling wave bounces off some object and there are two waves, one that travels in one direction and the other that travels in the opposite direction. In this case, the displacement of the wave is canceled and only one oscillation remains.
Answer:
a) Ws = 2.548 J
b) Wf = 1.153 J
c) v = 1.923 m / s
Explanation:
a) The work done by the spring force
Ws = ½ * k * x²
Ws = ½ * 260 N/m *0.14² m
Ws = 2.548J
b) The increase in thermal energy can by find using
Et = Wf
Wf = µ * m *g * x
Wf = 0.42 * 2.0 kg *9.8 m/s² * 0.14m
Wf = 1.153 J
c) The speed just as the block reaches can by fin using
EK = Ws + Et
Ek = ( 2.548 + 1.153 ) J = 3.7 J
Ek = ½ * m * v²
v² = 2* Ek / m
v = √[2 * 3.7 J / 2.0 kg]
v = 1.923 m / s