1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
2 years ago
15

If the water in the bathtub has a higher temperature than the air in the bathroom, which will occur?

Physics
1 answer:
shutvik [7]2 years ago
4 0
Heat will flow from the water into the air by convection .
You might be interested in
a body of radius R and mass m is rolling horizontally without slipping with speed v. it then rolls us a hill to a maximum height
ki77a [65]

Answer:

mR²/2

Explanation:

Here is the complete question

An object of radius′

R′  and mass ′

M′  is rolling horizontally without slipping with speed ′

V′

. It then rolls up the hill to a maximum height h = 3v²/4g. The moment of inertia of the object is (g= acceleration due to gravity)

Solution

Since it rolls without slipping, there is no friction. So, its initial mechanical energy at the horizontal surface equals its final mechanical energy at the top of the hill.

Since the object is rolling initially, and on horizontal ground, it initial energy is kinetic and made up of rotational and translational kinetic energy.

So, E = K + K'

E = 1/2mv² + 1/2Iω² where m = mass of object, v = speed of object, I = moment of inertia of object and ω = angular speed of object = v/r where v = speed of object and R = radius of object.

Also, the final mechanical energy of the object, E' is its potential energy at the top of the hill. So, E' = mgh.

Since E = E',

1/2mv² + 1/2Iω² = mgh

substituting the values of ω and h into the equation, we have

1/2mv² + 1/2Iω² = mgh

1/2mv² + 1/2I(v/R)²= mg(3v²/4g)

Expanding the brackets, we have

1/2mv² + 1/2Iv²/R²= 3mv²/4

Dividing through by v², we have

1/2m + I/2R²= 3m/4

Subtracting m/2 from both sides, we have

I/2R² = 3m/4 - m/2

Simplifying, we have

I/2R² = m/4

Multiplying through by 2R², we have

I = m/4 × 2R²

I = mR²/2

6 0
2 years ago
When a honeybee flies through the air, it develops a charge of +20 pC . Part A How many electrons did it lose in the process of
Yuri [45]

Answer:

1.3 × 10⁸ e⁻

Explanation:

When a honeybee flies through the air, it develops a charge of +20 pC = + 20 × 10⁻¹² C. This is a consequence of losing electrons (negative charges). The charge of 1 mole of electrons is 96468 C (Faraday's constant). The moles of electrons representing 20 pC are:

20 × 10⁻¹² C × (1 mol e⁻/ 96468 C) = 2.1 × 10⁻¹⁶ mol e⁻

1 mole of electrons has 6.02 × 10²³ electrons (Avogadro's number). The electrons is 2.1 × 10⁻¹⁶ moles of electrons are:

2.1 × 10⁻¹⁶ mol e⁻ × (6.02 × 10²³ e⁻/ 1 mol e⁻) = 1.3 × 10⁸ e⁻

7 0
3 years ago
What is the wavelength of a monochromatic light beam, where the photon energy is 2.70 × 10^−19 J? (h = 6.63 ×10^−34 J⋅s, c = 3.0
SOVA2 [1]

Answer:

Wavelength = 736.67 nm

Explanation:

Given

Energy of the photon = 2.70 × 10⁻¹⁹ J

Considering:

Energy=h\times frequency

where, h is Plank's constant having value as 6.63 x 10⁻³⁴ J.s

The relation between frequency and wavelength is shown below as:

c = frequency × Wavelength

Where, c is the speed of light having value = 3×10⁸ m/s

So, Frequency is:

Frequency = c / Wavelength

So,  Formula for energy:

Energy=h\times \frac {c}{\lambda}

Energy = 2.70 × 10⁻¹⁹ J

c = 3×10⁸ m/s

h = 6.63 x 10⁻³⁴ J.s

Thus, applying in the formula:

2.70\times 10^{-19}=6.63\times 10^{-34}\times \frac {3\times 10^8}{\lambda}

Wavelength = 736.67 × 10⁻⁹ m

1 nm = 10⁻⁹ m

So,

<u>Wavelength = 736.67 nm</u>

8 0
3 years ago
I need help, ASAP i’m failing and i have no clue what’s going on in my AP physics class at all.
garri49 [273]
What’s the question or problem ?
6 0
3 years ago
Masses A and B rest on very light pistons that enclose a fluid.There is no friction between the pistons and the cylinders they f
RSB [31]

Answer:

D)Not enough information

Explanation:

According to Pascal's principle, the pressure exerted on the two pistons is equal:

p_A = p_B

Pressure is given by the ratio between force F and area A, so we can write

\frac{F_A}{A_A}=\frac{F_B}{A_B}

The force exerted on each piston is just equal to the weight of the corresponding mass: F=W=mg, where m is the mass and g is the gravitational acceleration. So the equation becomes

\frac{m_A g}{A_A}=\frac{m_B g}{A_B}

Now we can rewrite the mass as the product of volume, V, times density, d:

\frac{V_A d_A g}{A_A}=\frac{V_B d_B g}{A_B}

We also know that A_B = 2.0 m^2\\A_A = 1.0 m^2

So we can further re-arrange the equation (and simplify g as well):

\frac{V_A d_A}{1}=\frac{V_B d_B}{2}

\frac{d_A}{d_B}=\frac{V_B}{2V_A}

We are also told that block B has bigger volume than block A: V_B > V_A. However, this information is not enough to allow us to say if the fraction on the right is greater than 1 or smaller than 1: therefore, we cannot conclude anything about the densities of the two objects.

3 0
3 years ago
Other questions:
  • Which of the following statements is an example of absolute time?
    8·2 answers
  • A car traveling 75 km/h slows down at a constant 0.50 m/s2 just by "letting up on the gas." calculate (a) the distance the car c
    11·1 answer
  • Which of the following represents thermal energy transfer through radiation
    14·1 answer
  • HELP ME, PLEASE.
    15·2 answers
  • WILL AWARD BRAINLLIEST!!!!
    8·2 answers
  • he absolute potential at a distance of 2.0 m from a positive point charge is 100 V. What is the absolute potential 4.0 m away fr
    7·2 answers
  • Each tire on a car has a radius of 0.330 m and is rotating with an angular speed of 11.7 revolutions/s. Find the linear speed v
    14·1 answer
  • Why is the heliocentric model not correct
    6·2 answers
  • A 2.80 kg mass is dropped from a height of 4.50 m . Find its potential energy (PE) at the moment it is dropped .
    5·1 answer
  • 18)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!