Charge of electron = 1.6×10−¹⁹
(1.6×10−¹⁹)(1×10²) (2e)
= 3.2×10−¹⁷ J
Answer:
which pic...? there is no picture attached to your question
The pressure drop in pascal is 3.824*10^4 Pascals.
To find the answer, we need to know about the Poiseuille's formula.
<h3>How to find the pressure drop in pascal?</h3>
- We have the Poiseuille's formula,

- where, Q is the rate of flow, P is the pressure drop, r is the radius of the pipe, is the coefficient of viscosity (0.95Pas-s for Glycerin) and l being the length of the tube.
- By substituting values and rearranging we will get the pressure drop as,

Thus, we can conclude that, the pressure drop in pascal is 3.824*10^4.
Learn more about the Poiseuille's formula here:
brainly.com/question/13180459
#SPJ4
Answer:
reduced
Explanation:
The use of bearing surfaces that are themselves sacrificial, such as low shear materials, of which lead/copper journal bearings are an example
<span>118 C
The Clausius-Clapeyron equation is useful in calculating the boiling point of a liquid at various pressures. It is:
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
where
Tb = Temperature boiling
R = Ideal Gas Constant (8.3144598 J/(K*mol) )
P = Pressure of interest
Hvap = Heat of vaporization of the liquid
T0, P0 = Temperature and pressure at a known point.
The temperatures are absolute temperatures.
We know that water boils at 100C at 14.7 psi. Yes, it's ugly to be mixing metric and imperial units like that. But since we're only interested in relative pressure differences, it's safe enough. So
P0 = 14.7
P = 14.7 + 12.3 = 27
T0 = 100 + 273.15 = 373.15
And for water, the heat of vaporization per mole is 40660 J/mol
Let's substitute the known values and calculate.
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
Tb = 1/(1/373.15 K - 8.3144598 J/(K*mol) ln(27/14.7)/40660 J/mol)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K ln(1.836734694)/40660)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K 0.607989372/40660)
Tb = 1/(0.002679887 1/K - 5.055103194 1/K /40660)
Tb = 1/(0.002679887 1/K - 0.000124326 1/K)
Tb = 1/(0.002555561 1/K)
Tb = 391.3034763 K
Tb = 391.3034763 K - 273.15
Tb = 118.1534763 C
Rounding to 3 significant figures gives 118 C</span>