Refer to the diagram shown below.
h = height of the girl above water when she lets go of the rope.
The launch velocity is 22.5 m/s at 35° to the horizontal. Therefore the vertical component of the velocity is
v = 22.5 sin(35°) = 12.9055 m/s.
The time of flight is t = 1.10 s before the girl hits the surface of the water at a height of -h.
Therefore
-h = (12.9055 m/s)*(1.10 s) - (1/2)*(9.8 m/s²)*(1.10 s)²
-h = 8.267 m
= 8.3 m (nearest tenth)
Answer:
When the girl let go of the rope, she was about 8.3 m above the surface of the water.
Answer:
L = 0 m
Therefore, the cricket was 0m off the ground when it became Moe’s lunch.
Explanation:
Let L represent Moe's height during the leap.
Moe's velocity v at any point in time during the leap is;
v = dL/dt = u - gt .......1
Where;
u = it's initial speed
g = acceleration due to gravity on Mars
t = time
The determine how far the cricket was off the ground when it became Moe’s lunch.
We need to integrate equation 1 with respect to t
L = ∫dL/dt = ∫( u - gt)
L = ut - 0.5gt^2 + L₀
Where;
L₀ = Moe's initial height = 0
u = 105m/s
t = 56 s
g = 3.75 m/s^2
Substituting the values, we have;
L = (105×56) -(0.5×3.75×56^2) + 0
L = 0 m
Therefore, the cricket was 0m off the ground when it became Moe’s lunch.
Explanation:
Earwax helps to protect your ears from infection so if you like chewing gum, this helps in removing the wax. But this might not happen at your young age. So if you grow and still likes chewing gum it will remove the wax completely thereby leading to loss on hearing
Answer:
12.64968 Hz
Explanation:
v = Velocity of sound in seawater = 1522 m/s
u = Velocity of dolphin = 7.2 m/s
f' = Actual frequency = 2674 Hz
From Doppler effect we get the relation

The frequency that will be received is 2661.35032 Hz
The difference in the frequency will be
