<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Transpiration is the progression of <em>water </em>inside a plant! So, the molecule representing transpiration is going to be good ol' H2O! =)
The rate of change in velocity<span> is called acceleration.</span>
<h2>Heptene formed is -</h2><h2>

</h2>
Explanation:
The two possibilities when the peroxide is not present
+ HBr →
In presence peroxide,
≡
+ HBr →
- When peroxides are present in the reaction mixture, hydrogen bromide adds to the triple bond of heptane with regioselectivity.
- This reaction is opposite to that of Markovnikov's rule which says that when asymmetrical alkene reacts with a protic acid HX, then the hydrogen of an acid is attached to the carbon with more in number of hydrogen substituents, and the halide (X) group is attached to the carbon with more in number of substituents of alkyl.
- One mole of HBr adds to one mole of 1-heptane.
- The structure of heptene formed is -

Answer:
1 mole of iron =6.023×10^23 particles
1 particles of iron=1/6.023×10^23 mole
7.46×10^25 particles =1/6.023×10^23×7.46×10^25
=1.238×10^48 mole is a required answer.