Answer:
Na3PO4 is excess reactant, CaCl2 is limiting reactant.
Explanation:
3CaCl2 + 2Na3PO4 ---> Ca3(PO4)2 + 6NaCl
from reaction : 3 mol 2 mol
given: 6 mol 5 mol (X)
X = (6*2)/3 = 4 mol Na3PO4
For 6 mol CaCl2 we need 4 mol Na3PO4, but we have 5 mol Na3PO4,
Na3PO4 is excess reactant, so CaCl2 is limiting reactant.
<h3>
Answer:</h3>
28.52 seconds
<h3>
Explanation:</h3>
Initial number of atoms of Nitrogen 12,000 atoms
Half-life = 7.13
Number of atoms after decay = 750 atoms
We are required to determine the time taken for the decay.
Note that half life is the time taken for a radioactive isotope to decay to a half of its original amount.
Using the formula;
Remaining amount = Initial amount × (1/2)^n , where n is the number of half lives
In our case;
750 atoms = 12,000 atoms × (1/2)^n
0.0625 = 0.5^n
n = log 0.0625 ÷ log 0.5
n = 4
But, 1 half life =7.13 seconds
Therefore;
Time taken = 7.13 seconds × 4
= 28.52 seconds
Therefore, the time taken for 12,000 atoms of nitrogen to decay to 750 atoms is 28.52 seconds
Your answer is 4 protons 4 electrons and 5 neutrons
Answer:
The structures are attached in file.
Hydrogen bonding and intermolecular forces is the reason for ranks allotted.
Explanation:
In determining Lewis structure, we calculate the overall number of valence electrons available for bonding. Making carbon (the least electronegative atom) the central atom in the structure, we allocate valence electrons until each atom has achieved stability.
In order of decreasing affinity to water molecules:

This is due to the fact that the
will accept protons more readily than the bicarbonate ion,
. Carbonic acid,
will not accept any more protons, hence it is the least attractive to water molecule, even though soluble.