Answer:
D)
Explanation:
This seems like a weird question
Water is held together by covalent bonds. The amount of energy required to break these bonds so that water would split into it's respective ions is pretty high. The chances that any one of the molecules floating in 1L of water get enough energy to spontaneously burst into it's ions is slim to none.
So, D) seems like the most likely answer
Answer:
nnkkkkhjkkhuokjhllkllllllll
18. <span>Answer is </span>
A<span>
<span>Since the enthalpy of reaction is positive, the
forward reaction is<span> an endothermic reaction which means the energy
is gained from the surrounding to happen the reaction. If the temperature
decreases, according to the </span></span>Le Chatelier's principle, the system tries to become equilibrium
by increasing temperature. Since forward reaction is endothermic (because of
the bond breaking), the backward reaction is exothermic (because of the bond
making) which releases the energy to the surroundings. This makes the increase
of temperature. So if the backward reaction is promoted because of the decrease
of temperature, then the concentration of H</span><span>₂ will decrease.</span>
<span>
</span>
19. Answer is A.
The reactant side
has 2 moles/molecules of reactants and the product side has 4 moles/molecules
of products which come from 1 N₂(g) and 3 H₂<span>(g). If the pressure is reduced in the system, according to the Le Chatelier's principle, the
system tries to increase the pressure. </span><span>Hence, forward
reaction is promoted because of the higher number
of molecules in product side. If the forward reaction is promoted, the
concentration of NH</span>₃(g) will decreased.
<span>20. </span>Answer is C.
If the concentration
of reactant is increased in the
system, according to the Le Chatelier's principle, the system tries
to reduce the concentration of that reactant. So if NH₃(g) concentration
is increased, then to be equilibrium, the forward reaction will be promoted.
Then the concentration of N₂<span>(g) will increase.</span>
<span> </span>
For starters, I would get the same height for each paper, such as a counter top. Then, I would make said paper. You would use a timer of course, maybe even something like a speed gun to calculate the speed as said paper falls. You would push each paper off the counter top and calculate the speed for each paper. This is the easiest way to prove your hypothesis.
According to Diagram B, look at the 1600 elevation until you see the descending air line touches it. Then look down at the temperature at the bottom of the graph. It is between 0 degrees to 5 degrees.
The only number that is between that range is 2 degrees C.