Since the barium ion will be isoelectronic to the nearest noble gas, which is xenon, the electronic configuration for Ba2+ is: [Xe]
The equation Eºcell = 0.0592/n logK must be used to find n and also Eºcell
2 Al(s) + 3 Mg2+(aq) → 2 Al3+(aq) + 3 Mg(s) Al3+ +3e- --> Al Eº = -1.66 V Mg2+ +2e- -->Mg Eº = -2.37V
To balance the equation, 6 moles of electrons must be transferred (2 Al and 3 Mg). This will be the value of n in the equation.
To find Eºcell, you need the reduction potentials which should be given in a table, and given above. Eºcell = -1.66 - (-2.37) = 0.71 V log K = Eºcell x n/0.0592 = 0.71 x 6/0.0592 log K = 71.95 K = 10^71.95 K = 1.1x10^72
Answer: Scientists use the term bioenergetics to describe the concept of energy flow (Figure 4.2) through living systems, such as cells. Cellular processes such as the building and breaking down of complex molecules occur through stepwise chemical reactions. Some of these chemical reactions are spontaneous and release energy, whereas others require energy to proceed. Just as living things must continually consume food to replenish their energy supplies, cells must continually produce more energy to replenish that used by the many energy-requiring chemical reactions that constantly take place. Together, all of the chemical reactions that take place inside cells, including those that consume or generate energy, are referred to as the cell’s metabolism.
Answer:
1.44 x 10²⁵ ions of Na⁺
Explanation:
Given parameters:
Mass of NaCl = 1.4kg = 1400g
Unknown:
Number of ions of sodium = ?
Solution:
The compound NaCl in ionic form can be written as;
NaCl → Na⁺ + Cl⁻
In 1 mole of NaCl we have 1 mole of sodium ions
Now, let us find the number of moles in NaCl;
Number of moles =
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Number of moles =
= 23.93mol
So;
Since 1 mole of NaCl gives 1 mole of Na⁺
In 23.93 mole of NaCl will give 23.93 mole of Na⁺
1 mole of a substance = 6.02 x 10²³ ions of a substance
23.93 mole of a substance = 6.02 x 10²³ x 23.93
= 1.44 x 10²⁵ ions of Na⁺