<u>Answer:</u>
Option (a)
<u>Explanation :</u>
A stage hand starts sliding a large piece of stage scenery originally at rest by pulling it horizontally with a force of 176 N.
Hence Force applied 
Force on piece of scenery 



µk = 
= 
=
=0.36
coefficient of static friction is 0.36
If you hear a clap of thunder in a time of 16.2s after seeing the associated lightning strike, you are: 5508 m far from the lightning strike
To solve this problem we must consider that the speed of light is greater than the speed of sound, therefore to calculate the distance we must use the speed of sound (340 m/s).
The formula and procedure we will use to solve this exercise is:
x = v * t
Where:
- x = distance
- t = time
- v = velocity
Information about the problem:
- v(sound) = 340 m/s
- t = 16.2 s
- x=?
Applying the distance formula we have that:
x = v * t
x= 340 m/s * 16.2 s
x = 5508 m
<h3>What is velocity?</h3>
It is a physical quantity that indicates the displacement of a mobile per unit of time, it is expressed in units of distance per time, for example (miles/h, km/h).
Learn more about velocity at: brainly.com/question/80295?source=archive
#SPJ4
Answer:
1.129×10⁻⁵ N
1.295 m
Explanation:
Take right to be positive. Sum of forces on the 31.8 kg mass:
∑F = GM₁m / r₁² − GM₂m / r₂²
∑F = G (M₁ − M₂) m / r²
∑F = (6.672×10⁻¹¹ N kg²/m²) (516 kg − 207 kg) (31.8 kg) / (0.482 m / 2)²
∑F = 1.129×10⁻⁵ N
Repeating the same steps, but this time ∑F = 0 and we're solving for r.
∑F = GM₁m / r₁² − GM₂m / r₂²
0 = GM₁m / r₁² − GM₂m / r₂²
GM₁m / r₁² = GM₂m / r₂²
M₁ / r₁² = M₂ / r₂²
516 / r² = 207 / (0.482 − r)²
516 (0.482 − r)² = 207 r²
516 (0.232 − 0.964 r + r²) = 207 r²
119.9 − 497.4 r + 516 r² = 207 r²
119.9 − 497.4 r + 309 r² = 0
r = 0.295 or 1.315
r can't be greater than 0.482, so r = 0.295 m.