Answer:
114.86%
Explanation:
In both cases, there is a vertical force equal to the sprinter's weight:
Fy = mg
When running in a circle, there is an additional centripetal force:
Fx = mv²/r
The net force is found with Pythagorean theorem:
F² = Fx² + Fy²
F² = (mv²/r)² + (mg)²
F² = m² ((v²/r)² + g²)
F = m √((v²/r)² + g²)
Compared to just the vertical force:
F / Fy
m √((v²/r)² + g²) / mg
√((v²/r)² + g²) / g
Given v = 12 m/s, r = 26 m, and g = 9.8 m/s²:
√((12²/26)² + 9.8²) / 9.8
1.1486
The force is about 114.86% greater (round as needed).
Answer:
ive got no idea just ask your teacher
To find the total number of miles traveled by a person, we add the distance that he has traveled: 3.0 + 5.00 + 4.000.
Now, to find the accurate number of significant figures when adding measurements, the basic rule for addition is to use the least number of decimal places when reporting the result.
Now, since 3.0 has the least number of decimal places, we report the sum with 1 decimal place and have 12.0 miles as the total distance traveled by the person to reach his destination.
Answer: 12.0 miles
Force 1 = 10/1000 × 5 = 0.05 N
Force 2 = 20/1000 × 2 = 0.04 N
F1>F2
so the answer is Force 1