Answer:
The second one a part of it heats up Earth's land and water equally.
Explanation:
Hope this help!!!
My guess for this one would be; 400 N
My reasoning would be; it starts at 0 on both X and Y, if you need to get to 1.00 meters thats 4/4. 1/4 of 1.00 is .25, and on .25 its on 100 so multiply it by 4 to make 1.00 and you get 400 N
Answer:
The heat flows into the gas during this two-step process is 120 cal.
Explanation:
Given that,
Number of moles = 3
Heat capacity at constant volume = 4.9 cal/mol.K
Heat capacity at constant pressure = 6.9 cal/mol.K
Initial temperature = 300 K
Final temperature = 320 K
We need to calculate the heat flow in to gas at constant pressure
Using formula of heat

Put the value into the formula


We need to calculate the heat flow in to gas at constant volume
Using formula of heat

Put the value into the formula


We need to calculate the heat flows into the gas during two steps
Using formula of total heat



Hence, The heat flows into the gas during this two-step process is 120 cal.
It take <u>approximately 29</u><u>.</u><u>5 </u><u>days</u> for moon to do its entire set of phases.
<h3>Explanation</h3>
The Moon is the only natural satellite of the Earth which undergoes three motions, that is :
- Rotating on its own axis
- Evolving around the Earth
- Together with the Earth evolving around the sun as the center of the solar system
With that, the moon has two periods of revolution, namely:
- Sidereal revolution, which is the original revolution of the Moon. This sidereal revolution is really the time it takes the Moon to orbit the Earth. The sidereal revolution of the moon has a time span of <u>27.3 days</u> or more accurate is approximately 27 days, 7.72 hours.
- Synodic revolution, namely the revolution of the Moon as seen from Earth as a series of moon phases (from the new moon phase, to the next new moon phase). The synodic revolution is slower, because the Moon needs to catch up with the Earth rotating in the same direction as the Moon. The synodic revolution of the moon has a time span of 29.5 days or to be more accurate approx 29 days, 12.734 hours.