1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
2 years ago
6

A beam of light in air is incident at an angle of 30º to the surface of a rectangular block of clear plastic (n = 1.46). The lig

ht beam first passes through the block and re-emerges from the opposite side into air at what angle to the normal to that surface?
Physics
1 answer:
Aneli [31]2 years ago
5 0

Answer:

θ = 30°

Explanation:

Firts, the angle when the beam of light passes through the block cam be calculated using Snell Law:

n_{1}sin(\theta_{1}) = n_{2}sin(\theeta_{2})

<u>Where</u>:

n₁: is the index of refraction of the incident medium (air) = 1

θ₁: is the incident angle = 30°

n₂: is the medium 2 (plastic) = 1.46

θ₂: is the transmission angle

Hence, θ₂ is:

sin(\theta_{2}) = \frac{n_{1}*sin(\theta_{1})}{n_{2}} = \frac{1*sin(30)}{1.46} = 0.34 \rightarrow \theta_{2} = 20.03 ^{\circ}

Now, when the beam of light re-emerges from the opposite side, we have:

n₁: is the index of refraction of the incident medium (plastic) = 1.46  

θ₁: is the incident angle = 20.03°                

n₂: is the medium 2 (air) = 1

θ₂: is the transmission angle

Hence, the angle to the normal to that surface (θ₂) is:

sin(\theta_{2}) = \frac{n_{1}*sin(\theta_{1})}{n_{2}} = \frac{1.46*sin(20.03)}{1} = 0.50 \rightarrow \theta_{2} = 30 ^{\circ}  

 

Therefore, we have that the beam of light will come out at the same angle of when it went in, since, it goes from air and enters to a plastic medium and then enters again in this medium to go out to air again. This was proved using the Snell Law.    

I hope it helps you!                

You might be interested in
During a tennis serve, a racket is given an angular acceleration of magnitude 150 rad/s^2. At the top of the serve, the racket h
QveST [7]

Answer:

270 m/s²

Explanation:

Given:

α = 150 rad/s²

ω = 12.0 rad/s

r = 1.30 m

Find:

a

The acceleration will have two components: a radial component and a tangential component.

The tangential component is:

at = αr

at = (150 rad/s²)(1.30 m)

at = 195 m/s²

The radial component is:

ar = v² / r

ar = ω² r

ar = (12.0 rad/s)² (1.30 m)

ar = 187.2 m/s²

So the magnitude of the total acceleration is:

a² = at² + ar²

a² = (195 m/s²)² + (187.2 m/s²)²

a = 270 m/s²

3 0
3 years ago
A house burns down. On the house across the street, all of the vinyl siding is twisted, melted, and warped because of the heat.
ivann1987 [24]

Answer:

Radiation

Explanation:

The fire from the burning house is not directly touching the house. Also not convection because there is not water involved

7 0
3 years ago
Read 2 more answers
A horizontal 810-N merry-go-round of radius 1.60 m is started from rest by a constant horizontal force of 55 N applied tangentia
Sloan [31]

Answer:

576 joules

Explanation:

From the question we are given the following:

weight = 810 N

radius (r) = 1.6 m

horizontal force (F) = 55 N

time (t) = 4 s

acceleration due to gravity (g) = 9.8 m/s^{2}

K.E = 0.5 x MI x ω^{2}

where MI is the moment of inertia and ω is the angular velocity

MI = 0.5 x m x r^2

mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg

MI = 0.5 x 82.65 x 1.6^{2}

MI = 105.8 kg.m^{2}

angular velocity (ω) = a x t

angular acceleration (a) = torque ÷ MI

where torque = F x r = 55 x 1.6 = 88 N.m

a= 88 ÷ 105.8 = 0.83 rad /s^{2}

therefore

angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s

K.E = 0.5 x MI x ω^{2}

K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules

6 0
3 years ago
A student visits the beach and wants to explore how landforms, such as sand dunes, are the result of changes caused by wind. wha
posledela
C Camera. I think this because you can make timelapses with cameras which makes it easy to see.
3 0
3 years ago
Read 2 more answers
How do intermolecular forces differ from intramolecular forces
kicyunya [14]

Answer:

Explanation:

Intramolecular forces is a strong bond that helps to bond atoms together while intermolecular forces are weak bond that are present between molecules.

8 0
3 years ago
Other questions:
  • If you pour different liquids into a graduated cylinder, which layer would be at the bottom?
    7·1 answer
  • What do you think would happen to earth's tides if the moon was not there? the tides would....?
    5·1 answer
  • if one paperclip has the mass of 1 gram and 1000 paperclips has a mass of 1 kilogram how many kilograms are 8000 paperclips ?
    9·1 answer
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • Two massive, positively charged particles are initially held a fixed distance apart. When they are moved farther apart, the magn
    7·1 answer
  • An additional factor in how an element is rendered is that properties are passed from a parent element to its children in a proc
    9·2 answers
  • Which statement best describes how a wave would move differently through a pot of boiling water than the steam created from it?
    12·2 answers
  • An archer wishes to shoot an arrow at a target at eye level a distance of 50.0m away. If the initial speed imparted to the arrow
    13·1 answer
  • When the body said to be in equilibrium​
    15·2 answers
  • A flash of red light and a flash of blue light enter a glass cube perpendicular to its surface at the same time. after passing t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!