Answer:
t=2.025 inches
Explanation:
Given that
P = 400 Psi
Yield stress ,σ = 80 ksi
Diameter ,d= 45 ft
We know that
1 ft = 12 inches
d= 540 inches
Factor of safety ,K= 3
The required thickness given as

t=thickness


t=2.025 inches
Therefore thickness will be 2.025 inches.
Answer:
D
Explanation:
To know which is most or least cost-effective, it's not enough to look at only the per day rate, or only the time to complete. You have to multiply them to get the total cost of the project.
![\left[\begin{array}{ccccc}&Cost\ per\ day\ (\$)&Time\ to\ complete\ (days)&Total\ cost\ (\$)\\Zoe&500&8&4000\\Greg&650&10&6500\\Orion&400&12&4800\\Jin&700&5&3500\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D%26Cost%5C%20per%5C%20day%5C%20%28%5C%24%29%26Time%5C%20to%5C%20complete%5C%20%28days%29%26Total%5C%20cost%5C%20%28%5C%24%29%5C%5CZoe%26500%268%264000%5C%5CGreg%26650%2610%266500%5C%5COrion%26400%2612%264800%5C%5CJin%26700%265%263500%5Cend%7Barray%7D%5Cright%5D)
As you can see, Greg is the least cost-effective because he charges the most for the project.
Answer:
a.) -147V
b.) -120V
c.) 51V
Explanation:
a.) Equation for potential difference is the integral of the electrical field from a to b for the voltage V_ba = V(b)-V(a).
b.) The problem becomes easier to solve if you draw out the circuit. Since potential at Q is 0, then Q is at ground. So voltage across V_MQ is the same as potential at V_M.
c.) Same process as part b. Draw out the circuit and you'll see that the potential a point V_N is the same as the voltage across V_NP added with the 2V from the other box.
Honestly, these things take practice to get used to. It's really hard to explain this.
Answer: hope it helps
Explanation:Moving air has a force that will lift kites and balloons up and down. Air is a mixture ... Here is a simple computer simulation that you can use to explore how wings make lift. ... All these dimensions together combine to control the flight of the plane. A pilot ... When the rudder is turned to one side, the airplane moves left or right.