Answer:
×

Explanation:
Please kindly find the attached document for the answer.
Answer:
a)
, b) 
Explanation:
a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

The capacity ratio is:



Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that
. The efectiveness of the heat exchanger is:


The real heat transfer rate is:




The exit temperature of the hot fluid is:




The log mean temperature difference is determined herein:



The heat transfer surface area is:



Length of a single pass counter flow heat exchanger is:



b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

Answer:
//Define the header file
#ifndef PLAYER_H
#define PLAYER_H
//header file.
#include <string>
//Use the standard namespace.
using namespace std;
//Define the class Player.
class Player
{
//Declare the required data members.
string name;
int score;
public:
//Declare the required
//member functions.
void setName(string par_name);
void setScore(int par_score);
string getName();
int getScore();
}
//End the definition
//of the header file.
#endif
Player.cpp:
//Include the "Player.h" header file,
#include "Player.h"
//Define the setName() function.
void Player::setName(string par_name)
{
name = par_name;
}
//Define the setScore() function.
void Player::setScore(int par_score)
{
score = par_score;
}
//Define the getName() function.
string Player::getName()
{
return name;
}
//Define the getScore() function.
int Player::getScore()
{
return score;
}
Answer:
The diameter is 50mm
Explanation:
The answer is in two stages. At first the torque (or twisting moment) acting on the shaft and needed to transmit the power needs to be calculated. Then the diameter of the shaft can be obtained using another equation that involves the torque obtained above.
T=(P×60)/(2×pi×N)
T is the Torque
P is the the power to be transmitted by the shaft; 40kW or 40×10³W
pi=3.142
N is the speed of the shaft; 250rpm
T=(40×10³×60)/(2×3.142×250)
T=1527.689Nm
Diameter of a shaft can be obtained from the formula
T=(pi × SS ×d³)/16
Where
SS is the allowable shear stress; 70MPa or 70×10⁶Pa
d is the diameter of the shaft
Making d the subject of the formula
d= cubroot[(T×16)/(pi×SS)]
d=cubroot[(1527.689×16)/(3.142×70×10⁶)]
d=0.04808m or 48.1mm approx 50mm
1 liter = .264 gallon
1 km = .621 mile
this means that 58.3km/L is equal to 137.13mpg
so
500/137.13 = 3.65 gallons of gas
3.65 x 3.5 = $12.78