Answer:
Explanation:
In a gaseous reaction mixture partial pressure is proportion to mole of the gas concerned .
Pressure of the reactant gas from gas equation
PV = nRT
P = nRT / V
= .166 x .082 x ( 273+179) / 10
= .615 atm
C₃H₇OH = (CH₃)₂CO + H₂
before reaction moles in terms of pressure
.615 0 0
After reaction
.615 - x x x
.444 = x² / ( .615 - x )
.273 - .444 x = x²
x² + .444 x - .273 = 0
x = .361 atm
So partial pressure of acetone is .361 atm at equilibrium.
We need to use the following formula
Δ


n= 4 moles
F= constant= 96500C/mol
let's plug in the values.
ΔG= -(4)(96500)(0.24)=
-92640 J or -92.6 kJ
To determine the mole ratios of the substances, we need to know the balanced chemical reaction of the system. The reaction between hydrazine and hydrogen peroxide yields to nitrogen and water. The balanced chemical reaction is:
N2H4 + 2H2O2 --> N2 + 4H2O
Therefore, the mole ratio between hydrazine and hydrogen peroxide is 1:2 and the mole ratio between hydrazine and water is 1:4.
NH3 is neutralised by the equation:
HCL + NH3 -> NH4CL
In this equation there is a one to one relationship in terms of the number of moles of each reactant. I.e. To neutralise 1 mole of NH3 we require 1 mole of HCL.
To calculate the concentration of NH3 required, we must first calculate the number of moles of HCL used.
volume HCL = 35.5mL = 0.0355 litres
concentration HCL = 0.23M = 0.23 mole/litre
Note that the term "M" for concentration simply means moles/litre
number moles = concentration x volume
number moles HCL = 0.0355 x 0.23 = 0.008165 moles HCL
based on the equation, we know the number of moles of NH3 must be the same
So,
moles NH3, n = 0.008165
volume NH3, v = 20.0mL = 0.020 litres
n = c x v
c = n / v
c = 0.008165 / 0.020
=0.41
i.e. the concentration of NH3 would be 0.41 moles/litre or 0.41M
This intuitively makes sense because there is less volume of NH3 required to be neturalised, in a one-to-one mole relationship. So the concentration of NH3 would need to be higher than that of HCL.