Answer:
463.4 m/s
Explanation:
The escape velocity on the surface of a planet/asteroid is given by
(1)
where
G is the gravitational constant
M is the mass of the planet/asteroid
R is the radius of the planet/asteroid
For the asteroid in this problem, we know
is the density
is the volume
So we can find its mass:

Also, the asteroid is approximately spherical, so its volume is given by

where R is the radius. Solving the formula for R, we find its radius:
![R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3(3.32\cdot 10^{12}m^3)}{4\pi}}=9256 m](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%283.32%5Ccdot%2010%5E%7B12%7Dm%5E3%29%7D%7B4%5Cpi%7D%7D%3D9256%20m)
So now we can use eq.(1) to find the escape velocity:

It has changed because earlier in the days people couldn't even figure out if the world was flat or round but now we can add decimals and multiply fractions.
Answer:
The magnitude of the acceleration is 
The direction is
i.e the negative direction of the z-axis
Explanation:
From the question we are that
The mass of the particle 
The charge on the particle is 
The velocity is 
The the magnetic field is 
The charge experienced a force which is mathematically represented as

Substituting value



Note :

Now force is also mathematically represented as

Making a the subject

Substituting values



This is the Doppler effect.
1. As the sound leaves the horn the sound waves are at first close to each other and as they move outwards they become further apart. The closer the sound waves are the louder the noise.
As the car gets the closer the sound waves get closer, so the horn becomes louder.
2. As the horn moves away, the sound waves become less frequent, causing the pitch to get lower.