I believe there should be some sort of table attached. Unfortunately I cannot answer this question. Sorry!
Answer:
λ = 2042 nm
Explanation:
given data
screen distance d = 11 m
spot s = 4.5 cm = 4.5 ×
m
separation L = 0.5 mm = 0.5 ×
m
to find out
what is λ
solution
we will find first angle between first max and central bright
that is tan θ = s/d
tan θ = 4.5 ×
/ 11
θ = 0.234
and we know diffraction grating for max
L sinθ = mλ
here we know m = 1 so put all value and find λ
L sinθ = mλ
0.5 ×
sin(0.234) = 1 λ
λ = 2042.02 ×
m
λ = 2042 nm
Answer:
t = 3.29 seconds
Explanation:
It is given that,
Height of the Eiffel tower is 60 m
Initial speed of a euro, u = 2 m/s
It will move under the action of gravity in the downward direction. Firstly, we can find the final velocity as follows :

Let t is the time taken by the euro to hit the ground. It can be calculated as :

Hence, it will take 3.29 seconds to hit the ground.
Cmndkdkkdnd djnd dhdbhd s ahah who w baggage wbhebwnwh
You didn't include the numerical value of speed.