Three types of bias can be distinguished: information bias, selection bias, and confounding. These three types of bias and their potential solutions are discussed using various examples.
Bias can damage research, if the researcher chooses to allow his bias to distort the measurements and observations or their interpretation. When faculty are biased about individual students in their courses, they may grade some students more or less favorably than others, which is not fair to any of the students.
Answer:
The displacement is zero miles
Explanation:
The displacement of an object that moves from point A to point B is defined as

Where d is the displacement of the object. The displacement does not depend on the trajectory of the object. It only depends on the linear distance between the end point and the starting point.
In this case we know that the person walks from home to work and then walks from work to home. Therefore, the total displacement is the linear distance between the point where its journey begins and the point where the route ends.
The tour begins on the front porch of your house and ends on the front porch of your house (when you return from work). If we call A to the front porch of the house then the displacement is:

The displacement is zero miles, since the person finishes the journey just where it started (front porch)
Answer:
a = √ (a_t² + a_c²)
a_t = dv / dt
, a_c = v² / r
Explanation:
In a two-dimensional movement, the acceleration can have two components, one in each axis of the movement, so the acceleration can be written as the components of the acceleration in each axis.
a = aₓ i ^ + a_y j ^
Another very common way of expressing acceleration is by creating a reference system with a parallel axis and a perpendicular axis. The axis called parallel is in the radial direction and the perpendicular axis is perpendicular to the movement, therefore the acceleration remains
a = √ (a_t² + a_c²)
where the tangential acceleration is
a_t = dv / dt
the centripetal acceleration is
a_c = v² / r
Answer:
c. 0.12 m/s
Explanation:
by using momentum formula 
we get
