Answer:
a) ΔH°rxn = -9.2kJ/mol
b) ΔH°rxn = -9.2kJ/mol
Explanation:
Using Hess's law, you can find ΔH of a reaction from ΔH of formation of the substances involved in the reaction, thus:
ΔH°rxn = ∑(BE(reactants)) − ∑(BE(products))
Or:
ΔH°rxn = ∑(nΔH°f (products)) − ∑(mΔH°f (reactants))
For the reaction:
H₂(g) + I₂(g) → 2HI(g)
a) Using the first equation:
ΔH°rxn = ΔH (H-H) + ΔH (I-I) - 2ΔHBE (H-I)
ΔH°rxn = 436.4kJ + 151kJ - 2×298.3kJ
<em>ΔH°rxn = -9.2kJ/mol</em>
<em />
b) Using the second equation:
ΔH°rxn = 2Δ°f (HI) − ΔH°f (H₂) - ΔH°f (I₂)
ΔH°rxn = 2×25.9kJ - 0kJ - 61.0kJ
<em>ΔH°rxn = -9.2kJ/mol</em>
<em />
Answer:
The rate of evaporation decreases, or slows down
Explanation:
The statement that describes the chemical reaction is D chlorine gas reacts with potassium bromide to form potassium chloride in solution and liquid bromide<span>. The symbol "Cl" represents chlorine. The symbols in the brackets show the physical state of the substance, (g) is gaseous, (s) is solid, (aq) is aqueous and (l) is liquid.</span>
Answer:
itd be B because the melting point is 29.76 no matter the size
Explanation: