Answer:
The three dimensions shown in an isometric drawing are the height, H, the length, L, and the depth, D
Explanation:
An isometric drawing of an object in presents a pictorial projection of the object in which the three dimension, views of the object's height, length, and depth, are combined in one view such that the dimensions of the isometric projection drawing are accurate and can be measured (by proportion of scale) to draw the different views of the object or by scaling, for actual construction of the object.
Answer:
sectores industriales, comerciales o públicos, o para el uso doméstico.
Explanation:
Answer:
a) 
b) 
c) 
d) 
Explanation:
Non horizontal pipe diameter, d = 25 cm = 0.25 m
Radius, r = 0.25/2 = 0.125 m
Entry temperature, T₁ = 304 + 273 = 577 K
Exit temperature, T₂ = 284 + 273 = 557 K
Ambient temperature, 
Pipe length, L = 10 m
Area, A = 2πrL
A = 2π * 0.125 * 10
A = 7.855 m²
Mass flow rate,

Rate of heat transfer,

a) To calculate the convection coefficient relationship for heat transfer by convection:

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.
c) The surface temperature of the pipe:
Smear coefficient of the pipe, 

b) Heat loss from the pipe to the environment:

d) The required fan control power is 25.125 W as calculated earlier above
Answer:
Heat losses by convection, Qconv = 90W
Heat losses by radiation, Qrad = 5.814W
Explanation:
Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:
1. Radiation
2. Conduction
3. Convection
Convection is defined as the transfer of heat through the actual movement of the molecules.
Qconv = hA(Temp.final - Temp.surr)
Where h = 6.4KW/m2K
A, area of a square = L2
= (0.25)2
= 0.0625m2
Temp.final = 250°C
Temp.surr = 25°C
Q = 64 * 0.0625 * (250 - 25)
= 90W
Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.
Qrad = E*S*(Temp.final4 - Temp.surr4)
Where E = emissivity of the surface
S = boltzmann constant
= 5.6703 x 10-8 W/m2K4
Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)
= 5.814 W
Answer:
See attachment for detailed answer.
Explanation: