1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
3 years ago
9

1.Force that pulls toward the center of mass.​

Physics
2 answers:
kondaur [170]3 years ago
7 0
Gravity if I’m not mistaken
monitta3 years ago
3 0

Gravity– a natural force that pulls objects downward. Earth's gravity pulls us and all objects downwards towards its center.

You might be interested in
A sample of metallic frewium weighs 185N on a spring scale in air. When immersed in pure water, the frewium pulls on the scale w
balu736 [363]

Wow !  This one could have some twists and turns in it.
Fasten your seat belt.  It's going to be a boompy ride.

-- The buoyant force is precisely the missing <em>30N</em> .

--  In order to calculate the density of the frewium sample, we need to know
its mass and its volume.  Then, density = mass/volume .

-- From the weight of the sample in air, we can closely calculate its mass.

   Weight = (mass) x (gravity)
   185N = (mass) x (9.81 m/s²)
   Mass = (185N) / (9.81 m/s²) = <u>18.858 kilograms of frewium</u> 

-- For its volume, we need to calculate the volume of the displaced water.

The buoyant force is equal to the weight of displaced water, and the
density of water is about 1 gram per cm³.  So the volume of the
displaced water (in cm³) is the same as the number of grams in it.

The weight of the displaced water is 30N, and weight = (mass) (gravity).

           30N = (mass of the displaced water) x (9.81 m/s²)

           Mass = (30N) / (9.81 m/s²) = 3.058 kilograms

           Volume of displaced water = <u>3,058 cm³</u>

Finally, density of the frewium sample = (mass)/(volume)

      Density = (18,858 grams) / (3,058 cm³) = <em>6.167 gm/cm³</em> (rounded)

================================================

I'm thinking that this must  be the hard way to do it,
because I noticed that

       (weight in air) / (buoyant force) =  185N / 30N = <u>6.1666...</u>

So apparently . . .

        (density of a sample) / (density of water) =

                                  (weight of the sample in air) / (buoyant force in water) .

I never knew that, but it's a good factoid to keep in my tool-box.


3 0
3 years ago
Describe what happens to the electric field lines when two objects with unlike charges are brought near each other.
harina [27]
Hello.

The answer is:

It creates a spark.

Then thespark can sometimes start a fire or other serious problems.

Have a nice day
4 0
3 years ago
Read 2 more answers
Does the atmosphere contain 21% nitrogen in 78% oxygen
Alex777 [14]

Answer:

An atmosphere is the layers of gases surrounding a planet or other celestial body. Earth's atmosphere is composed of about 78% nitrogen, 21% oxygen, and one percent other gases

7 0
2 years ago
The distance between adjacent nodes in a standing wave pattern in a length of string is 25.0 cm:A. What is the wavelength of wav
mina [271]

A) 50 cm

B) 10000 cm/s

Explanation

Step 1

A)

If you know the distance between nodes and antinodes then use this equation:

\begin{gathered} \frac{\lambda}{2}=D \\ \text{where}\lambda\text{ is the wavelength} \\ D\text{ is the distance betw}een\text{ nodes} \end{gathered}

then, let

D=\text{ 25 cm }

now, replace to find the wavelength

\begin{gathered} \frac{\lambda}{2}=25 \\ \text{Multiply both sides by 2} \\ \frac{\lambda}{2}\cdot2=25\cdot2 \\ \lambda=50\text{ Cm} \end{gathered}

so, the wavelength is

A) 50 cm

Step 2

The speed of a wave can be found using the equation

v=\lambda f

or velocity = wavelength x frequency,

then,let

\begin{gathered} \lambda=50\text{ cm} \\ f=200\text{ Hz} \end{gathered}

replace and evaluate

\begin{gathered} v=\lambda f \\ v=50\text{ cm }\cdot200\text{ HZ} \\ v=10000\text{ }\frac{\text{cm}}{s} \end{gathered}

so

B) 10000 cm/s

I hope this helps you

6 0
1 year ago
Why won't a very bright beam of red light impart more energy to an ejected electron than a feeble beam of violet light?
bearhunter [10]
This is related to the energy carried by photons of light the energy of each photon is proportional to the frequency of the light since red light has a lower frequency then violet light and photons of red light carry less energy than the photons of violet light as a result the red protons eject electrons that have less energy than the ejected electrons by Violet photons
3 0
3 years ago
Other questions:
  • . A water balloon is thrown horizontally at a speed of 2.00 m/s from the roof of a building that is 6.00m above the ground. At t
    8·2 answers
  • Foods that allow microorganisms to grow are called parasites. true or false
    10·1 answer
  • What animals were delisted in july 2019?
    15·1 answer
  • Article 5 of the Fundamental Orders of Connecticut is MOST LIKELY related to which idea?
    15·1 answer
  • Based on what you have just read, why is studying atoms and their parts and particles helpful to people?
    12·2 answers
  • Which of the following is a risk associated with texting?
    13·1 answer
  • What is the unit of work in SI system?
    10·2 answers
  • Pls help me with this question I want the answer ASAP quick
    9·1 answer
  • A 2300 kg sailboat is moving west at 5.5 m/s when an eastward wind
    7·1 answer
  • If the trend changed toward traditional (pre-World War II) families, how would that affect women’s rights?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!