Answer:
The net friction force is 8.01 N
Explanation:
Net friction force = mass of hockey puck × acceleration
From the equations of motion
v^2 = u^2 + 2as
v = 40 m/s
u = 0 m/s (puck was initially at rest)
s = 30 m
40^2 = 0^2 + 2×a×30
60a = 1600
a = 1600/60 = 26.7 m/s^2
The acceleration of the puck is 26.7 m/s^2
Net friction force = 0.3 × 26.7 = 8.01 N
Answer:
Explanation:
q = 2e = 3.2 x 10^-19 C
mass, m = 6.68 x 10^-27 kg
Kinetic energy, K = 22 MeV
Current, i = 0.27 micro Ampere = 0.27 x 10^-6 A
(a) time, t = 2.8 s
Let N be the alpha particles strike the surface.
N x 2e = q
N x 3.2 x 10^-19 = i t
N x 3.2 x 10^-19 = 0.27 x 10^-6 x 2.8
N = 2.36 x 10^12
(b) Length, L = 16 cm = 0.16 m
Let N be the alpha particles
K = 0.5 x mv²
22 x 1.6 x 10^-13 = 0.5 x 6.68 x 10^-27 x v²
v² = 1.054 x 10^15
v = 3.25 x 10^7 m/s
So, N x 2e = i x t
N x 2e = i x L / v
N x 3.2 x 10^-19 = 2.7 x 10^-7 x 0.16 / (3.25 x 10^7)
N = 4153.85
(c) Us ethe conservation of energy
Kinetic energy = Potential energy
K = q x V
22 x 1.6 x 10^-13 = 2 x 1.5 x 10^-19 x V
V = 1.17 x 10^7 V
The best and most correct answer among the choices provided by your question is the third choice or number 3.
<span>As an object falls freely toward the earth, the momentum of the object-earth system remains the same.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
For the front glass of the car to get wet,
.
The given parameters:
- <em>Speed of the car, = Vc</em>
- <em>Speed of the rain, = 10 m/s</em>
The relative velocity of the car with respect to the falling rain is calculated as;

- If the speed of the car equals the speed of the rain, the rain will fall behind the car.
- If the speed of the rain is greater than speed of the car, the rain will fall far in front of the car.
- If the speed of the car is greater than speed of the rain, the rain will fall on the car.
Thus, for the front glass of the car to get wet,
.
Learn more about relative velocity here: brainly.com/question/17228388