1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
2 years ago
14

Mechanical waves form when a source of energy causes a medium to what

Physics
1 answer:
Mice21 [21]2 years ago
7 0

Answer:

Ripple in water is a surface wave. A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. While waves can move over long distances, the movement of the medium of transmission —the material—is limited.

You might be interested in
A certain light truck can go around a flat curve having a radius of 150 m with a maximum speed of 35.5 m/s. a) What is the coeff
postnew [5]

Answer:

The coefficient of friction present between the roadway and the wheels of the truck is <u>0.833</u>.

Explanation:

Given:

Radius of the curve (R) = 150 m

Maximum speed of truck (v) = 35.5 m/s

Let the coefficient of friction between the roadway and the wheels of the truck be "μ".

As the truck is moving around a circular curve. So, the force acting on it is centripetal force which acts in the radial inward direction towards the center of the circular curve.

The centripetal force acting on the truck is given as:

F_c=\frac{mv^2}{R}

Now, the friction between the roadway and the wheels of the truck is responsible for providing the necessary centripetal force. So, frictional force is equal to the centripetal force necessary for circular motion.

Frictional force is given as:

f=\mu N

Where, 'N' is the normal force. Since there is no vertical motion, the normal force is equal to weight of truck. So,

N=mg

Therefore, frictional force, f=\mu mg

Now, frictional force = centripetal force

f=F_c\\\\\mu mg=\frac{mv^2}{R}\\\\\mu = \frac{v^2}{Rg}

Plug in the given values and solve for 'μ'. This gives,

\mu=\frac{(35\ m/s)^2}{(150\ m)(9.8\ m/s^2)}\\\\\mu=\frac{1225\ m^2/s^2}{1470\ m^2/s^2}\\\\\mu=0.833

Therefore, the coefficient of friction present between the roadway and the wheels of the truck is 0.833

7 0
3 years ago
Bambi the young dear was distracted Buy butterfly and jumped into the road in front of the two vehicles as shown in the diagram
bagirrra123 [75]

Speed of car A is given as

v_a = 70 mph

now we need to convert it into SI units

1 miles = 1609 m

1 hour = 3600 s

now we have

v_a = 70 *\frac{1609}{3600} = 31.3 m/s

now its distance from Bambi is given as

d_a = 350 m

time taken by it to hit the Bambi

t = \frac{d}{v}

t = \frac{350}{31.3}

t = 11.2 s

Now other car is moving at speed 50 mph

so its speed in SI unit will be

v_b = 50* \frac{1609}{3600}

v_b = 22.35 m/s

now its distance from Bambi is given as

d_b = 590 feet

as we know that 1 feet = 0.3048 m

d_b = 590*0.3048 = 179.83 m

now the time to hit the other car is

t_2 = \frac{179.83}{22.35}

t_b = 8.05 s

So Car B will hit the Bambi first

7 0
3 years ago
A 300-kg piano being held by a crane is accidentally dropped from a height of 15 meters. a. What is the speed of the piano just
FinnZ [79.3K]

Answer:

a) 17.16m/s

b) 44,145J

c) Sound the piano makes when hitting the ground, vibration of the ground, heat.

d) i) It's smaller due to the energy dissipated by the friction between air and the parachute.

ii) It stays the same, the only difference is that the dissipated energy is distributed between air resistance and the kinetic energy dissipated by the ground whent he piano hits it.

Explanation:

a)

In order to solve this problem we must start by doing a drawing of the situation, which will help us visualize the problem better. (See attached picture).

So, in this problem we can ignore air resistance so we can say that the energy is conserved, this is the total initial energy is the same as the total final energy, so we get that:

U_{0}+K_{0}=U_{f}+K_{f}

When the piano is released it has an initial speed of zero, so the initial kinetic energy is zero. When the piano hits the ground it will have a height of 0m, so the final potential energy is zero as well. This will simplify our equation:

U_{0}=K_{f}

We know that potential energy is given by the formula:

U=mgh

and kinetic energy is given by the formula:

K=\frac{1}{2}mv^{2}

which can be substituted in our equation:

mgh=\frac{1}{2}mv^{2}

we can divide both sides of the equation into the mass of the piano, so we get:

gh=\frac{1}{2}v^{2}

which can be solved for the final velocity which yields:

v=\sqrt{2gh}

we can now substitute the data provided by the problem so we get:

v=\sqrt{2(9.81m/s^{2})(15m)}

which yields:

v=17.16m/s

b)

Since energy is conserved, this means that the total dissipated energy will be the same as the potential energy, so we get that:

E=mgh

so

E=(300kg)(9.81m/s^{2})(15m)

which yields:

E=44,145J

c)

When the piano hits the ground, the kinetic energy it had will be transformed to other types of energy, mostly vibration and heat. The vibration will turn to sound due to the movement of air created by the piano itself and the ground. And heat is created by the friction between the molecules created by the vibrations and the collition itself. So some of the indicators of this release of energy could be:

-Sound

-Vibration

-Heat.

d)

i) The amount of inetic energy dissipated would decrease due to the friction between air and the parachute. Since air is resisting the movement of the piano, this will translate into a loss of energy, if we did an energy balance we would get that:

U_{0}=K_{f}+E_{p}

The total amount of energy is conserved but it will be distributed between the energy lost due to air resistance and the kinetic energy the piano has at the time it hits the ground.

ii) So the total amount of energy dissipated remains the same, the only difference is that it will be distributed between air resistance and the kinetic energy of the piano.

3 0
3 years ago
A battery charger is connected to a dead battery and delivers a current of 3.5 a for 4 hours, keeping the voltage across the bat
oksano4ka [1.4K]
The power delivered is equal to the product between the voltage V and the current I:
P=VI=(16 V)(3.5 A)=56 W

This power is delivered for a total time of t=4h=4 \cdot 3600 s = 14400 s, so the total energy delivered to the battery is
E=Pt = (56 W)(14400 s)=806400 J=806.4 kJ
5 0
3 years ago
????????????????????????
Kipish [7]

Answer:

Velocity

Explanation:

"The principle is that the slope of the line on a position-time graph is equal to the velocity of the object. If the object is moving with a velocity of +4 m/s, then the slope of the line will be +4 m/s."

^^This explanation is from physicsclassroom.com

3 0
3 years ago
Other questions:
  • Which of the following molecules is correctly paired with its macromolecule class? (2 points)
    8·1 answer
  • Atmospheric pressure is reported in a variety of units depending on local meteorological preferences. In many European countries
    9·1 answer
  • A stone with a mass of 0.700kg is attached to one end of a string 0.600m long. The string will break if its tension exceeds 65.0
    15·1 answer
  • Jenny feels the touch of a feather on her left thumb where is this information registered in the brain?
    12·1 answer
  • Which metal has the lowest atomic weight
    15·2 answers
  • WRONG ANSWERS WILL BE REPORTED
    10·1 answer
  • A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The lift i
    8·1 answer
  • What is the energy of a rock with a mass of 10.2 kg on a cliff that is 300 m height?
    9·1 answer
  • if you were floating in the solar system at equal distances between mars (small mass) and jupiter (large mass) which planet woul
    13·1 answer
  • Estimate the volume of each ball. Use the formula
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!