Answer:
The change in the internal energy of the system -878 J
Explanation:
Given;
energy lost by the system due to heat, Q = -1189 J (negative because energy was lost by the system)
Work done on the system, W = -311 J (negative because work was done on the system)
change in internal energy of the system, Δ U = ?
First law of thermodynamics states that the change in internal energy of a system (ΔU) equals the net heat transfer into the system (Q) minus the net work done by the system (W).
ΔU = Q - W
ΔU = -1189 - (-311)
ΔU = -1189 + 311
ΔU = -878 J
Therefore, the change in the internal energy of the system -878 J
It is correct, next time re-check your answer and don't second guess yourself. ;3
the answer is magnetic separation, not sedimentation separation
Answer:
rats. that's all i know of Just about everything except the mother hen if they are natural hatch. Even when you incubate them there are threats. The healthy chicks will mob the weak ones, the older chicks (even by a day) will pick on the younger ones. Temperature extremes will threaten them as they need warm, humid conditions with gradual drops in surrounding temps in the brooder box. Early disease is sometimes a problem and all chicks should be started on medicated chick feed for the first few weeks to prevent several digestive diseases. Even the water dispenser can be a threat as newly hatched chicks will immerse themselves in an open water container so care should be taken to supply water in a self feeding covered dish.
Explanation:
Answer:
See the attached image
Explanation:
The first step is the production of the <u>carboanion</u> in the
compound. We will get the <u>negative charge</u> on the methyl group and the <u>positive charge</u> in the Li atom.
Then the carboanion can <u>attack the acetone</u>. The double bond of the oxo group would <u>delocalized</u> upon the oxygen, generating a positive charge in the carbon that can be attacked by the carboanion formaiting a <u>new C-C bond</u>.