Answer:
The magnitude of the net electric field is:

Explanation:
The electric field due to q1 is a vertical positive vector toward q1 (we will call it E1).
On the other hand, the electric field due to q2 is a horizontal positive vector toward q2(We will call it E2).
Knowing this, the <u>magnitude of the net electric</u> field will be the<u> E1 + E2. </u>
Let's find first E1 and E2.
The electric field equation is given by:

Where:
- k is the Coulomb constant (k = 9*10^{9} Nm²/C²)
- q1 is the first charge
- d1 is the distance from q1 to P


And E2 will be:



Finally, we need to use the Pythagoras theorem to find the magnitude of the net electric field.



I hope it helps you!
Answer:
magnitude = 304.14 km/h
direction:
West of North
Explanation:
The final plane's vector velocity will be the result of the vector addition of one pointing North of length 300 km/h, another one pointing West of length 50 km/h.
To find the magnitude of the final velocity vector (speed) we need to apply the Pythagorean theorem in a right angle triangle with sides: 300 and 50, and find its hypotenuse:
km/h
The actual direction of the plane is calculated using trigonometry, in particular with the arctan function, since the tangent of the angle can be written as:

So the resultant velocity vector of the plane has magnitude = 304.14 km/h,
and it points
West of the North direction.
Answer:
W = -1844.513 J
Explanation:
GIVEN DATA:
mass of spider man is m 74 kg
vertical displacement if spider is 11 m
final displacement = 11 cos 60.6 = - 6.753 m
change in displacement is = -6.753 - (-11) = 4.25 m
gravity force act on spiderman is f = mg = 74 × 9.8 = 725.2 N
work done by gravity is 

where 180 is the angle between spiderman weight and displacement
W = -1844.513 J