Answer:Hola UwU
Most chemical reactions involve the breaking and formation of chemical bonds. It takes energy to break a chemical bond but energy is released when chemical bonds are formed. If more energy is released than consumed, then the chemical reaction evolves heat and is said to be exothermic.
Explanation:Adios~ UnU haha
Answer:
5
Explanation:
Firstly, we convert what we have to percentage compositions.
There are two parts in the molecule, the sulphate part and the water part.
The percentage compositions is as follows:
Sulphate- (103.74)/(103.74 + 58.55) × 100% = apprx 64%
The water part = 100 - 64 = 36%
Now, we divide the percentages by the molar masses.
For the CuSO4 molar mass is 64 + 32 + 4(16) = 160g/mol
For the H2O = 2(1) + 16 = 18g/mol
Now we divide the percentages by these masses
Sulphate = 64/160 = 0.4
Water = 36/18 = 2
The ratio is thus 0.4:2 = 1:5
Hence, there are 5 water molecules.
Answer:
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
Explanation:
Main reaction: 2Ag⁺(aq) + Mn(s) ⇄ 2Ag(s) + Mn²⁺(aq)
In the oxidation half reaction, the oxidation number increases:
Mn changes from 0, in the ground state to Mn²⁺.
The reduction half reaction occurs where the element decrease the oxidation number, because it is gaining electrons.
Silver changes from Ag⁺ to Ag.
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
To balance the hole reaction, we need to multiply by 2, the second half reaction:
Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
(Ag⁺(aq) + 1e⁻ ⇄ Ag(s)) . 2
2Ag⁺(aq) + 2e⁻ ⇄ 2Ag(s)
Now we sum, and we can cancel the electrons:
2Ag⁺(aq) + Mn(s) + 2e⁻ ⇄ 2Ag(s) + Mn²⁺(aq) + 2e⁻
Answer:
D. ATP stores energy in its "tail," which is made from three phosphate groups.
Explanation:
ATP = 3 phosphates
ADP= 2 phosphates
AMP= 1 phosphate
The answer is A because I did this before