Answer:A
Explanation:
Given
Skier A takes straight, smooth route while Skier B takes curvy, bumpy route to finish.
We know gravity is conservative in nature i.e. work done against it is independent of path followed
So work done by gravity for A and B is same
According to Work energy Theorem Change in the kinetic Energy is equal to work done by all the forces.


where h=vertical height of hill
thus 
which is same for both A and B
Answer:

Explanation:
Given:
- file size to be transmitted,

- transmission rate of data,

- propagation speed,

- distance of data transfer,

<u>Now the delay in data transfer from source to destination for each 10 Mb:</u>



<u>Now this time is taken for each 10 Mb of data transfer and we have 30 Mb to transfer:</u>
So,



The block's speed at the point where x=0.25A is v = 31.95 cm/s.
<h3>What is Spring constant?</h3>
The spring stiffness is quantified by the spring constant, or k. For various springs and materials, it varies. The stiffer the spring is and the harder it is to stretch, the bigger the spring constant.
question is incomplete, this is the remaining statement
What is the amplitude of the subsequent oscillations? And What is the block's speed at the point where x=0.25A?
x = Asin(wt)
v = Aw coswt
at t = 0
w = sqrt(k/m)
v = Aw
A = v/w
A = 7.17 cm
part b )
E = 1/2mv^2 + 1/2kx^2 = 1/2kA^2
mv^2 + k(1/4A)^2 = 1/2kA^2
mv^2 + kA^2/16 = kA^2
mv^2 = kA^2 - kA^2/16
mv^2 = 15kA^2/16
v^2 = 15/16 * (k/m) * A^2
v^2 = 15/16 *w^2A^2
v = sqrt(15/16) * wA
v = 31.95 cm/s
to learn more about spring constant go to -
brainly.com/question/23885190
#SPJ4
final velocity = 0
acceleration = - 10 m/ s 2
distance. = 20 m
u = ?
v^2 - u ^2 = 2 a s
0^2 - u^ 2 = 2 * -10 * 20
-u^2 = -400
u = √ 400
u = 20m / s
<h2>
Answer: Diffraction</h2><h2 />
Diffraction is a characteristic phenomenon that occurs in all types of waves
.
In this sense, <u>diffraction</u> happens when a wave (the light in this case) meets an obstacle or a slit .When this occurs, the light bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming <u><em>multiple patterns</em></u> with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that <u>the obstacle must be comparable in size (similar size) to the size of the wavelength.
</u>
<u />
<u />