Answer:
31.24 kJ
Explanation:
- SiO₂(g) + 3C(s) → SiC(s) + 2CO(g) ΔH° = 624.7 kJ/mol
First we <u>convert 3.00 grams of SiO₂ to moles</u>, using its <em>molar mass</em>:
- 3.00 g SiO₂ ÷ 60.08 g/mol = 0.05 mol
Now we <u>calculate the heat absorbed</u>, using the <em>given ΔH°</em>:
If the complete reaction of 1 mol of SiO₂ absorbs 624.7 kJ, then with 0.05 mol:
- 0.05 mol * 624.7 kJ/mol = 31.24 kJ of heat would be absorbed.
Answer:
B. halocline
Explanation:
it is a zone in the oceanic water that changes depending on the depth
Hope This Helped Sorry If Wrong
It would be false sulfur has 6
Answer:
63.05% of MgCO3.3H2O by mass
Explanation:
<em>of MgCO3.3H2O in the mixture?</em>
The difference in masses after heating the mixture = Mass of water. With the mass of water we can find its moles and the moles and mass of MgCO3.3H2O to find the mass percent as follows:
<em>Mass water:</em>
3.883g - 2.927g = 0.956g water
<em>Moles water -18.01g/mol-</em>
0.956g water * (1mol/18.01g) = 0.05308 moles H2O.
<em>Moles MgCO3.3H2O:</em>
0.05308 moles H2O * (1mol MgCO3.3H2O / 3mol H2O) =
0.01769 moles MgCO3.3H2O
<em>Mass MgCO3.3H2O -Molar mass: 138.3597g/mol-</em>
0.01769 moles MgCO3.3H2O * (138.3597g/mol) = 2.448g MgCO3.3H2O
<em>Mass percent:</em>
2.448g MgCO3.3H2O / 3.883g Mixture * 100 =
<h3>63.05% of MgCO3.3H2O by mass</h3>
When it is acted upon by an outside force