Answer:
Certain things we think of as hard work, such as writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work reveals its relationship to energy—whenever work is done, energy is transferred.
For work, in the scientific sense, to be done, a force must be exerted and there must be motion or displacement in the direction of the force.
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
<span>2.40 - 1.68 =0.72 g of oxigen
moles = 0.72/16 g/mol=0.045
moles x = 1.68/ 55.9=0.03
0.03/0.03 = 1 = x
0.045 / 0.03 = 1.5 = O
to get whole numbers multiply by 2
x2O3
X2O3 +3 CO = 2 X + 3 CO2</span>
Time taken = 3 hours
<h3>Further explanation</h3>
Given
speed : 75 mph
distance : 225 miles
Required
time taken
Solution
An equation of constant velocity motion

d = distance = m
v = speed = m / s
t = time = seconds
Input the value :
t = d : v
t = 225 miles : 75 miles/hour
t = 3 hours