Answer:
P1 =4 atm
T1= 20°C
P2=1 atm
T2=?
According to Gay-Lussac's Law or Third Gas Law,
P1T2=P2T1
4×T2=1×20
T2= 20/4
T2= 5°C
Answer At 5°C temperature does a gas at 1.00 atm !
Answer:
I was having trouble with this question idk the answer
Explanation:
Answer: divide by 946.353
= 1.58 x 10^-4 or 0.000159
Explanation:
Answer:
A = 2A + 3B → 5C
Explanation:
The two molecule of A and three molecules of B will react to form the five molecules of C.
2A + 3B → 5C
Other options are incorrect because,
B = A₂ + B₃ → C₅
in this reaction one molecule of A₂ and one molecule of B₃ combine to form one molecule of C₅.
C = 2A + 5B → 3C
in this reaction two molecules of A and five molecules of B combine to form three molecule of C.
D = A₂ + B₃ → C₃
in this reaction one molecule of A₂ and one molecule of B₃ combine to from one molecule of C₃.
<u>Answer:</u> The law that related the ideal gas law is 
<u>Explanation:</u>
There are 4 laws of gases:
- <u>Boyle's Law:</u> This law states that pressure is inversely proportional to the volume of the gas at constant temperature.
Mathematically,

- <u>Charles' Law:</u> This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

- <u>Gay-Lussac Law:</u> This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

- <u>Avogadro's Law:</u> This law states that volume is directly proportional to number of moles at constant temperature and pressure.
Mathematically,

Hence, the law that related the ideal gas law is 