Answer:
when the radius is halved, F becomes 4 times
Explanation:
<u><em>The formula is given by</em></u>

<u><em>When r is halved:</em></u>

=> 
=> 
<u><em>This means when the radius is halved, F becomes 4 times</em></u>
Answer:
320N
Explanation:
The magnitude of the torque required is expressed using the formula;
T = Fr sin theta where;
F is the force
r is the radius = 9cm = 0.09m
theta is the angle of inclination = 8 degrees
Torque T = 4Nm
Substitute the given values and get F
4 = F(0.09)sin8
4 = 0.0125F
F = 4/0.0125
F = 320N
Hence the magnitude of the force required when the force is applied at 8 degrees to the wrench is 320N
Question 1) excited and moving around a lot.
Question 2) heat
Question 3) specific heat
Question 4) As temperature increases, energy transferred increases.
Hope these answers help!
Answer:
The amount of electrons that flow in the given time is 3.0 C.
Explanation:
An electric current is defined as the ratio of the quantity of charge flowing through a conductor to the time taken.
i.e I =
...................(1)
It is measure in Amperes and can be measured in the laboratory by the use of an ammeter.
In the given question, I = 1.5A, t = 2s, find Q.
From equation 1,
Q = I × t
= 1.5 × 2
= 3.0 Coulombs
The amount of electrons that flow in the given time is 3.0 C.
Answer:
d= 1.56 m
Explanation:
In order to have a constructive interference, the path difference between the sources of the sound, must be equal to an even multiple of the semi-wavelength, as follows:
⇒ d = d₂ - d₁ = 2n*(λ/2)
The minimum possible value for this distance, is when n=1, as it can be seen here:
dmin = λ
In any wave, there exists a fixed relationship between the wave speed, the frequency and the wavelength:
v = λ*f
If v = vsound = 343 m/s, and f = 220 1/s, we can solve for λ:
λ =
⇒ dmin =λ = 1.56 m