Answer:
The first frequency of audible sound in the speed sound is
f = 662 Hz
Explanation:
vs = 344 m/s
x = 52 cm * 1 / 100m = 0.52m
The wave length is the distance between the peak and peak so
d = 2x
d = 2*0.52 m
d = 1.04 m
So the frequency in the speed velocity is
f = 1 / T
f = vs / x = 344 m/s / 0.52m
f ≅ 662 Hz
Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Answer:
11.7 m/s
Explanation:
To find its speed, we first find the acceleration of the center of mass of a rolling object is given by
a = gsinθ/(1 + I/MR²) where θ = angle of slope = 4, I = moment of inertia of basketball = 2/3MR²
a = 9.8 m/s²sin4(1 + 2/3MR²/MR²)
= 9.8 m/s²sin4(1 + 2/3)
= 9.8 m/s²sin4 × (5/3)
= 1.14 m/s²
To find its speed v after rolling for 60 m, we use
v² = u² + 2as where u = initial speed = 0 (since it starts from rest), s = 60 m
v = √(u² + 2as) = √(0² + 2 × 1.14 m/s × 60 m) = √136.8 = 11.7 m/s
I believe that is true.
hope this helps!
Answer:
D= 1999.2 m
Explanation:
Given that
Average velocity ,v= 0.98 m/s
time ,t= 34 min
We know that
1 min = 60 s
That is why
t= 34 x 60 =2040 s
We know that
Displacement = Average velocity x time
D= v t
Now by putting the values in the above equation
D= 0.98 x 2040 m
D= 1999.2 m (eastward)
The direction of the displacement will be towards eastward.
That is why the displacement will be 1999.2 m or we can say that 1.9992 km.