Answer:
a) m₁ = 1.41 kg
, b) m₂ = 2.65 kg
Explanation:
For this exercise we will use Newton's second law
Block 1
T - W₁ = m₁ a
Block 2
W₂ - T = m₂ a
We have selected the positive block 1 rising and block two lowering, as the pulley has no friction does not affect the movement
Let's use kinematics to look for acceleration
y = v₀ t + ½ a t²
As part of the rest the initial speed is zero
a = 2 y / t²
a = 2 6.00 / 2²
a = 3 m / s²
Let's replace in the equation of block 1
a) T = m₁ g + m₁ a
m₁ = T / (g + a)
m₁ = 18.0 / (9.8 + 3)
m₁ = 1.41 kg
b) we substitute in the equation of block 2
W₂ - T = m₂ a
m₂ g - m₂ a = T
m₂ = T / (g-a)
m₂ = 18.0 / (9.8 -3)
m₂ = 2.65 kg
C, planets orbit around the sun because of gravity
–0.05 m/s
Explanation:
The total momentum of the system player+basketball must be conserved before and after the ball has been thrown.
Before throwing the ball, the total momentum of the system is zero, because can assume both the player and the basketball being at rest:

The total momentum after the ball has been thrown is instead the sum of the momenta of the the player and of the basketball:

where
is the player's mass
is the player's velocity
is the ball's mass
is the ball's velocity
For the conservation of momentum, we have



And the negative sign means that the player travels in the opposite direction to the ball.
Answer:
They are known as isotopes