Answer:
162500000.
Explanation:
Given that
Diameter of the wire , d= 1.8 mm
The length of the wire ,L = 15 cm
Current ,I = 260 m A
The charge on the electron ,e= 1.6 x 10⁻¹⁹ C
We know that Current I is given as

I=Current
q=Charge
t=time
q= I t
q= 260 m t
The total number of electron = n
q= n e

n=162500000 t

The number of electron passe per second will be 162500000.
<span>The answer is The conductance of a conductor is inversely
proportional to the cross-sectional area of the conductor.</span>
<span>Conductance is directly related to the ease offered by any material to the passage of electric current. Conductance is the opposite of resistance. The higher the conductance, the lower the resistance and vice versa, the greater the resistance, the less conductance, so both are inversely proportional</span>
Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 
The work done by the machine is equal to the product between the force applied and the distance over which the force is applieds, so in this case:

And the power of the machine is equal to the ratio between the work done by the machine and the time taken:
Answer:
W₂= 10000 N
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area (A2) of the piston:
Pressure is defined as the force (F) applied per unit area (A)
P=F/A (N/m²)
P1=P2

Equation (1)
Data
W₁ = weight sits on the small piston
F₁ = W₁= 500 N
A₁ = 2.0 cm²
A₂ = 40 cm²
Calculation of the weight (W₂) can the large piston support
We replace data in the equation (1)
F₂ = 10000 N
W₂= F₂= 10000 N