The concentration of the original calcium ions is 0.005 M
<h3>What is concentration?</h3>
The term concentration has to do with the amount of substance in solution. We know that the concentration can be measured in a lot of units such as mole/litre, grams per litre, percentage and so on.
As such we have the equation;
Ca^2+(aq) + (NH4)2CrO4(aq) --------> CaCrO4(s) + 2NH4^+(aq)
Number of moles of the precipitate = 346.7 * 10^-3 g/156 g/mol
= 0.0022 moles
Now;
1 mole of Ca^2+ produces 1 mole of CaCrO4 hence 0.0022 moles of CaCrO4 was produced by 0.0022 moles of CaCrO4.
Given that the volume of the solution is 0.440 L, the concentration of the solution is; 0.0022 moles/0.440 L
= 0.005 M
Learn more about molarity:brainly.com/question/8732513
#SPJ1
Answer:
The London dispersion force is the weakest intermolecular force. The London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>
STP is the abbreviation of standard condition for temperature and pressure which is 273.15K temperature and 1.013× 10^5 Pa pressure. Since the pressure and temperature changes, I assume the question would ask about the result of the volume. The temperature used in ideal gas should be Kelvin, so 27 Celcius would be 300.15K.
The calculation would be
PV=T
V=T/P
V2/V1= T2*P1/T1*P2
V2/V1=273.15K* 90^10^3Pa/ 300.15K * 1.013× 10^5 Pa
V2= 0.81904 * 51.7ml
V2= 42.34ml