1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
2 years ago
7

A body of mass m, = 0.050 kg and initial velocity v₁ = 9 m / s turned to the right collides with a body of mass m₂ = 0.030 g wit

h unknown initial velocity v₂. After the collision, the two bodies join together and have a final velocity vy = 6 m / s to the right. Using the momentum conservation theorem, find the initial velocity v₂
Physics
1 answer:
Ugo [173]2 years ago
6 0

Answer:

Suppose two objects of different masses are moving with different velocities in the same direction on a straght-line before collision. After collision, they stick together and move with common (the same) velocity

You might be interested in
In an HVAC system, the purpose of pneumatics is to serve as A. a controller B. conditional air flow C. an energy source D. a sou
Naya [18.7K]

Answer: <u><em>A</em></u>

Explanation:

A pneumatic control system uses compressed air as a method of control for HVAC systems. ... Each senor responds to changes in temperature, humidity, and static pressure as examples, to provide feedback in a control loop to open or close the actuator to meet the control set point.

3 0
3 years ago
Block A of mass M is on a horizontal surface of negligible friction. An identical block B is attached to block A by a light stri
miv72 [106K]

Answer:

T’= 4/3 T  

The new tension is 4/3 = 1.33 of the previous tension the answer e

Explanation:

For this problem let's use Newton's second law applied to each body

Body A

X axis

      T = m_A a

Axis y

     N- W_A = 0

Body B

Vertical axis

     W_B - T = m_B a

In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension

We write the equations

    T = m_A a

    W_B –T = M_B a

We solve this system of equations

     m_B g = (m_A + m_B) a

    a = m_B / (m_A + m_B) g

In this initial case

     m_A = M

     m_B = M

     a = M / (1 + 1) M g

     a = ½ g

Let's find the tension

    T = m_A a

    T = M ½ g

    T = ½ M g

Now we change the mass of the second block

    m_B = 2M

    a = 2M / (1 + 2) M g

    a = 2/3 g

We seek tension for this case

    T’= m_A a

    T’= M 2/3 g

   

Let's look for the relationship between the tensions of the two cases

   T’/ T = 2/3 M g / (½ M g)

   T’/ T = 4/3

   T’= 4/3 T

The new tension is 4/3 = 1.33 of the previous tension the answer  e

4 0
3 years ago
The greatest pull of a magnet is near its poles.<br><br> True<br> False
DIA [1.3K]
False because opposites attract. :)
6 0
3 years ago
Read 2 more answers
to 10 Hz. Superimposed on this signal is 60-Hz noise with an amplitude of 0.1 V. It is desired to attenuate the 60-Hz signal to
givi [52]

Answer:

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

Explanation:

For this case we can use the formula for the Butterworth filter gain given by:

[tec] G = \frac{1}{\sqrt{1 +(\frac{f}{f_c})^{2n}}}[/tex]

Where:

G represent the transfer function and we want that G =0.1 since the desired signal is less than 10% of it's value

f_c = 10 Hz represent the corner frequency

f= 60 Hz represent the original frequency

n represent the filter order and that's the variable that we need to find

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

7 0
3 years ago
if the magnitudes of the forces vary with time as F1=Ct and F = 2Ct, where C equals to 7.5 N/s and t is time, find the time t0 a
Degger [83]

Answer:

The tension in the string is equal to Ct

And the time t0 when the rension in the string is 27N is 3.6s.

Explanation:

An approach to solving this problem jnvolves looking at the whole system as one body by drawing an imaginary box around both bodies and taking summation of the forces. This gives F2 - F1 = Ct. This is only possible assuming the string is massless and does not stretch, that way transmitting the force applied across it undiminished.

So T = Ct

When T = 27N then t = T/C = 27/7.5 = 3.6s

4 0
3 years ago
Other questions:
  • A standing wave of the third overtone is induced in a stopped pipe, 2.5 m long. The speed of sound is The frequency of the sound
    8·1 answer
  • With what speed must a ball be thrown vertically from ground level to rise to a maximum height of 41 m
    9·1 answer
  • A reaction that releases heat is what
    11·1 answer
  • The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through alumi
    10·1 answer
  • A rock is dropped from a 110-m-high cliff. How long does it take to fall (a) the first 55.0 m and (b) the second 55.0 m?
    11·1 answer
  • Two fluids that make use of water
    8·1 answer
  • Water falls without splashing at a rate of 0.200 L/s from a height of 3.60 m into a 0.730 kg bucket on a scale. If the bucket is
    15·2 answers
  • What best decribes the science method
    10·2 answers
  • What is the answer??
    10·1 answer
  • Tides can be used to convert kinetic energy into what kind of energy?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!