Answer:
See explaination and attachment.
Explanation:
Iteration method is a repetitive method applied until the desired result is achieved.
Let the given equation be f(x) = 0 and the value of x to be determined. By using the Iteration method you can find the roots of the equation. To find the root of the equation first we have to write equation like below
x = pi(x)
Let x=x0 be an initial approximation of the required root α then the first approximation x1 is given by x1 = pi(x0).
Similarly for second, thrid and so on. approximation
x2 = pi(x1)
x3 = pi(x2)
x4 = pi(x3)
xn = pi(xn-1).
please go to attachment for the step by step solution.
Answer:
A charge q1=7.0mc is located at the origin and a second charge q2=-5.0mc is located on the x axis, 0.3m the origin find the electric field at the point p which he's coordinates (0,0.40)m
Answer:
51.4 Ohms
Explanation:
By applying voltage division rule
where v is voltage, subscripts i and f represnt initial and final, R is resistance, m is internal and l is external.Substituting 7V for final voltage, 10V for initial voltage and the external resistance as 120 Ohms then

Answer:
(a) ------(3). (b)------(1) (c)-----(5) (d)------(2) ------ (e) -----4
Note: Kindly find an attached copy of the diagram associated with the solution to the question below.
Sources: the diagram to this question was researched from Quizlet
Explanation:
Solution
(1) Part (a)a waveform has a high frequency components compared to another waveform. the corresponding frequency components should be high.
So for the wave form a the corresponding frequency spectrum is (3)
(2) For part (b), waveform has three harmonics, the corresponding frequency spectrum is (1)
(3) The time domain waveform plot (c) is a sine wave but there exists a dc component.
Thus x[0] ≠0
For (c) the corresponding frequency spectrum is (5)
(4) For part (d) the corresponding frequency spectrum is (2)
(5) A sine wave is made of a single frequency only and its spectrum is a single point
For (e) the corresponding frequency spectrum is (4)