1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
2 years ago
7

4kj of energy are supplied to a machine used for lifting a mass.The force required is 800N.If the machine has an efficiency of 5

0%. To what height will it lift the mass?​
Engineering
1 answer:
Bogdan [553]2 years ago
7 0
I do not know shdjfjdjfk
You might be interested in
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
2 years ago
A concentrated load P is applied to the upper end of a 1.47-m-long pipe. The outside diameter of the pipe is D = 112 mm and the
myrzilka [38]

Answer:

Pmax = 38251.73 N

Explanation:

Given info

L = 1.47 m

D = 112 mm ⇒ R = D/2 = 112/2 mm = 56 mm

d = 101 mm  ⇒ r = D/2 = 101/2 mm = 50.5 mm

a) We can apply the following equation in order to get Q (First Moment of Area):

Q = 2*(A₁*y₁-A₂*y₂)

where

A₁ = π*R² = π*(56 mm)² = 3136 π mm²  

y₁ = 4*R/(3*π) = 4*56/(3*π) mm = 224/(3*π) mm

A₂ = π*r² = π*(50.5 mm)² = 2550.25 π mm²

y₂ = 4*r/(3*π) = 4*50.5/(3*π) mm = 202/(3*π) mm

then

Q = 2*(3136 π mm²*224/(3*π) mm-2550.25 π mm²*202/(3*π) mm)

⇒ Q = 62437.833 mm³

b) If  τallow = 83 MPa = 83 N/mm²

P = ?

We can use the equation

τ = V*Q / (t*I)   ⇒  V = τ*t*I / Q

where

t = D - d = 112 mm - 101 mm = 11 mm

I = (π/64)*(D⁴-d⁴) = (π/64)*((112 mm)⁴-(101 mm)⁴) = 2615942.11 mm⁴

Q = 62437.833 mm³

we could also use this equation in order to get Q:

Q = (4/3)*(R³-r³)

⇒  Q = (4/3)*((56 mm)³-(50.5 mm)³) = 62437.833 mm³

then we have

V = (83 N/mm²)*(11 mm)*(2615942.11 mm⁴) / (62437.833 mm³)

⇒ V = 2942.255 N

Finally Pmax = V = 38251.73 N

6 0
3 years ago
Technician A says that a radio may be able to receive AM signals, but not FM signals if the antenna is defective. Technician B s
DIA [1.3K]

The response to whether the statements made by both technicians are correct is that;

D: Neither Technician A nor Technician B are correct.

<h3>Radio Antennas</h3>

In radios, antennas are the means by which signals to the sought frequency be it AM or FM are received.

Now, if the antenna is bad, it means it cannot pick any radio frequency at all and so Technician A is wrong.

Now, most commercial antennas usually come around a resistance of 60 ohms and so it is not required for a good antenna to have as much as 500 ohms resistance and so Technician B is wrong.

Read more about Antennas at; brainly.com/question/25789224

3 0
2 years ago
What are the height and width of scissors?
timofeeve [1]
Short ones are 4.5 inches but long ones can be up to 8 inches.
8 0
2 years ago
LINKS GET BODIED ON SITE! RAWR
bulgar [2K]

Answer:

False

Explanation:

MRK ME BRAINLIEST PLZZZZZZZZZZZZZZZZZZ

7 0
3 years ago
Other questions:
  • You want to determine whether the race of the defendant has an impact on jury verdicts. You assign participants to watch a trial
    9·1 answer
  • A satellite is launched 600 km from the surface of the earth, with an initial velocity of 8333.3 m./s, acting parallel to the ta
    14·1 answer
  • Burn rate can be affected by: A. Variations in chamber pressure B. Variations in initial grain temperature C. Gas flow velocity
    15·1 answer
  • What energy type is represented in the picture?
    6·2 answers
  • What three training organizations are important for Union Masons?
    14·1 answer
  • I really need help i will give brainly plz no funny answers
    14·1 answer
  • Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. D
    15·1 answer
  • Principals of Construction intro
    11·1 answer
  • Engine horsepower decreases ________% for every___________feet above sea level.
    9·1 answer
  • Additional scals apply to the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!