Answer:
Airbags will deploy in almost any angle.
Explanation:
Cars have sensors around them, so when the car gets hit, the sensors detect a crash and deploy the airbags to keep you safe.
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Answer:
b. The pirating streams are eroding headwardly to intersect more of the other streams’ drainage basins, causing water to be diverted down their steeper gradients.
Explanation:
From the Kaaterskill NY 15 minute map (1906), this shows two classic examples of stream capture.
The Kaaterskill Creek flow down the east relatively steep slopes into the Hudson River Valley. While, the Gooseberry Creek is a low gradient stream flowing down the west direction which in turn drains the higher parts of the Catskills in this area.
However, there is Headward erosion of Kaaterskill Creek which resulted to the capture of part of the headwaters of Gooseberry Creek.
The evidence for this is the presence of "barbed" (enters at obtuse rather than acute angle) tributary which enters Kaaterskill Creek from South Lake which was once a part of the Gooseberry Creek drainage system.
It should be noted again, that there is drainage divide between the Gooseberry and Kaaterskill drainage systems (just to the left of the word Twilight) which is located in the center of the valley.
As it progresses, this divide will then move westward as Kaaterskill captures more and more of the Gooseberry system.
Answer:
The required diameter of the fuse wire should be 0.0383 cm to limit the current to 0.53 A with current density of 459 A/cm²
.
Explanation:
We are given current density of 459 A/cm² and we want to limit the current to 0.53 A in a fuse wire. We are asked to find the corresponding diameter of the fuse wire.
Recall that current density is given by
j = I/A
where I is the current flowing through the wire and A is the area of the wire
A = πr²
but r = d/2 so
A = π(d/2)²
A = πd²/4
so the equation of current density becomes
j = I/πd²/4
j = 4I/πd²
Re-arrange the equation for d
d² = 4I/jπ
d = √4I/jπ
d = √(4*0.53)/(459π)
d = 0.0383 cm
Therefore, the required diameter of the fuse wire should be 0.0383 cm to limit the current to 0.53 A with current density of 459 A/cm²
.
Answer:
A&C
Explanation:
breathing deeply is relaxing
talking with a friend can helping