Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.

Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.

Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
.009375 kg or 9.375 grams will remain
Answer: B- Chemical bonds are formed. Energy is released in the form of heat.
Explanation: I hoped that helped !
Answer:
Options B and C
Explanation:
Let's take a look at the options and get our answer by way of elimination. The basic definition of a neutral solution is given as;
A neutral solution is a substance which is neither acid nor basic . it has a PH of 7. it will have equal amount of H+ AND OH- ions in it.
a) a neutral solution does not contain any H3O+ or OH- This is wrong because take water as an example, it is neutral but contains both ions.
b) a neutral solution contains [H2O] = [H3O+]. This option is correct cause it is in line with the definition above.
c) an acidic solution has [H3O⁺] > [OH⁻]. Acidic solutions are any solution that has a higher concentration of hydrogen ions than water. This option is correct.
d) a basic solution does not contain any H3O⁺. This option is wrong. Basic solutions are any solution that has a higher concentration of hydroxide ions than water. This means they contain H3O⁺ but [OH⁻] is greater.
The correct answer is option A. Energy cannot be created during an ordinary chemical reaction. There is no such thing as an ordinary chemical reaction. Energy cannot be created or destroyed this is according to the law of conservation of energy. It can only be transformed from one form to another form.